Some analogues of von-Heumann's inequality for $J$-contractions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 165-172
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $J$ be a self-adjoint operator satisfying $J^2=I$. We prove that for any $J$-contraction $T$ (i. e. $T^*JT-J\leqslant0$) and any inner function $f$ holomorphic on the spectrum of $T$ the function $f(T)$ is a $J$-contraction too. It is also proved that for $J\ne\pm I$ only inner functions $f$ satisfy this property. We consider other analogues of von-Neumann's inequality.
@article{ZNSL_1987_157_a16,
author = {M. M. Malamud},
title = {Some analogues of {von-Heumann's} inequality for $J$-contractions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {165--172},
publisher = {mathdoc},
volume = {157},
year = {1987},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a16/}
}
M. M. Malamud. Some analogues of von-Heumann's inequality for $J$-contractions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 165-172. http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a16/