The spectral multiplicity of the solutions of polynomial operator equations
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 157-164

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider linear operators $T$ on a Hilbert space which satisfy the polynomial operator equation $p(T)=A$, where $p$ is a polynomial with complex coefficients and $A$ is a normal operator which is assumed to be either reductive or unitary. We calculate spectral characteristics of $T$: the multiplicity of the spectrum, the “disc”, the lattice of invariant subspaces, and others. The main example of the $T$'s considered is given by the weighted substitution operator $Tf=\varphi (f\circ\omega)$ on $L^2(X,\nu)$, where $\omega$ is a periodic automorphism of a measure space $(X,\nu)$ and $\varphi\in L^\infty(X,\nu)$.
@article{ZNSL_1987_157_a15,
     author = {A. V. Lipin},
     title = {The spectral multiplicity of the solutions of polynomial operator equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {157--164},
     publisher = {mathdoc},
     volume = {157},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a15/}
}
TY  - JOUR
AU  - A. V. Lipin
TI  - The spectral multiplicity of the solutions of polynomial operator equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1987
SP  - 157
EP  - 164
VL  - 157
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a15/
LA  - ru
ID  - ZNSL_1987_157_a15
ER  - 
%0 Journal Article
%A A. V. Lipin
%T The spectral multiplicity of the solutions of polynomial operator equations
%J Zapiski Nauchnykh Seminarov POMI
%D 1987
%P 157-164
%V 157
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a15/
%G ru
%F ZNSL_1987_157_a15
A. V. Lipin. The spectral multiplicity of the solutions of polynomial operator equations. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 157-164. http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a15/