A simplified proof of a theorem of J. Bourgain on extension of operators
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 146-150
Cet article a éte moissonné depuis la source Math-Net.Ru
The theorem in question states that every operator from a reflexive subspace of $L^1/H_0^1$ to $H^\infty$ extends to the whole of $L^1/H_0^1$.
@article{ZNSL_1987_157_a13,
author = {S. V. Kislyakov},
title = {A~simplified proof of a~theorem of {J.~Bourgain} on extension of operators},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {146--150},
year = {1987},
volume = {157},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a13/}
}
S. V. Kislyakov. A simplified proof of a theorem of J. Bourgain on extension of operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 146-150. http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a13/