A~simplified proof of a~theorem of J.~Bourgain on extension of operators
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 146-150

Voir la notice de l'article provenant de la source Math-Net.Ru

The theorem in question states that every operator from a reflexive subspace of $L^1/H_0^1$ to $H^\infty$ extends to the whole of $L^1/H_0^1$.
@article{ZNSL_1987_157_a13,
     author = {S. V. Kislyakov},
     title = {A~simplified proof of a~theorem of {J.~Bourgain} on extension of operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {146--150},
     publisher = {mathdoc},
     volume = {157},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a13/}
}
TY  - JOUR
AU  - S. V. Kislyakov
TI  - A~simplified proof of a~theorem of J.~Bourgain on extension of operators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1987
SP  - 146
EP  - 150
VL  - 157
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a13/
LA  - ru
ID  - ZNSL_1987_157_a13
ER  - 
%0 Journal Article
%A S. V. Kislyakov
%T A~simplified proof of a~theorem of J.~Bourgain on extension of operators
%J Zapiski Nauchnykh Seminarov POMI
%D 1987
%P 146-150
%V 157
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a13/
%G ru
%F ZNSL_1987_157_a13
S. V. Kislyakov. A~simplified proof of a~theorem of J.~Bourgain on extension of operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 146-150. http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a13/