Traces of functions belonging to Sobolev and Besov spaces and extensions from subsets of Euclidean space
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 137-145
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the existence of the trace operator $Tr\colon B_1^{n-\alpha}\to L^1_E(\mathcal H_\alpha)$, $0\leqslant\alpha$, implies the existence of the bounded extension (nonlinear) $\mathrm {Ext}\colon L^1(\mathcal H_\alpha)\to B_1^{n-\alpha}$, where $\mathcal H_\alpha$ denotes the $\alpha$-dimensional Hausdorff measure in $\mathbb R^n$ and $E$ is a Borel subset of $\mathbb R^n$.
@article{ZNSL_1987_157_a12,
author = {A. B. Gulisashvili},
title = {Traces of functions belonging to {Sobolev} and {Besov} spaces and extensions from subsets of {Euclidean} space},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {137--145},
publisher = {mathdoc},
volume = {157},
year = {1987},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a12/}
}
TY - JOUR AU - A. B. Gulisashvili TI - Traces of functions belonging to Sobolev and Besov spaces and extensions from subsets of Euclidean space JO - Zapiski Nauchnykh Seminarov POMI PY - 1987 SP - 137 EP - 145 VL - 157 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a12/ LA - ru ID - ZNSL_1987_157_a12 ER -
%0 Journal Article %A A. B. Gulisashvili %T Traces of functions belonging to Sobolev and Besov spaces and extensions from subsets of Euclidean space %J Zapiski Nauchnykh Seminarov POMI %D 1987 %P 137-145 %V 157 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a12/ %G ru %F ZNSL_1987_157_a12
A. B. Gulisashvili. Traces of functions belonging to Sobolev and Besov spaces and extensions from subsets of Euclidean space. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XVI, Tome 157 (1987), pp. 137-145. http://geodesic.mathdoc.fr/item/ZNSL_1987_157_a12/