The calculation of the connection multipliers for the equation $x^2\varphi''-(x^3+a_2x^2+a_1x+a_0)\varphi=0$
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 16, Tome 156 (1986), pp. 109-124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Numerical realization and the efficiency of method of calculation of connection multipliers described in auther's previous works are considered. It is established that used method is a generalization of traditional one for Bessel functions. Some relations between connection multipliers are deduced. Using these relations it is possible to estimate the accuracy of the method in some cases.
@article{ZNSL_1986_156_a9,
     author = {M. A. Kovalevsky},
     title = {The calculation of the connection multipliers for the equation $x^2\varphi''-(x^3+a_2x^2+a_1x+a_0)\varphi=0$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {109--124},
     year = {1986},
     volume = {156},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_156_a9/}
}
TY  - JOUR
AU  - M. A. Kovalevsky
TI  - The calculation of the connection multipliers for the equation $x^2\varphi''-(x^3+a_2x^2+a_1x+a_0)\varphi=0$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1986
SP  - 109
EP  - 124
VL  - 156
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1986_156_a9/
LA  - ru
ID  - ZNSL_1986_156_a9
ER  - 
%0 Journal Article
%A M. A. Kovalevsky
%T The calculation of the connection multipliers for the equation $x^2\varphi''-(x^3+a_2x^2+a_1x+a_0)\varphi=0$
%J Zapiski Nauchnykh Seminarov POMI
%D 1986
%P 109-124
%V 156
%U http://geodesic.mathdoc.fr/item/ZNSL_1986_156_a9/
%G ru
%F ZNSL_1986_156_a9
M. A. Kovalevsky. The calculation of the connection multipliers for the equation $x^2\varphi''-(x^3+a_2x^2+a_1x+a_0)\varphi=0$. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 16, Tome 156 (1986), pp. 109-124. http://geodesic.mathdoc.fr/item/ZNSL_1986_156_a9/