The calculation of the connection multipliers for the equation $x^2\varphi''-(x^3+a_2x^2+a_1x+a_0)\varphi=0$
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 16, Tome 156 (1986), pp. 109-124
Voir la notice de l'article provenant de la source Math-Net.Ru
Numerical realization and the efficiency of method of calculation of connection multipliers described in auther's previous works are considered. It is established that used method is a generalization of traditional one for Bessel functions. Some relations between connection multipliers are deduced. Using these relations it is possible to estimate the accuracy of the method in some cases.
@article{ZNSL_1986_156_a9,
author = {M. A. Kovalevsky},
title = {The calculation of the connection multipliers for the equation $x^2\varphi''-(x^3+a_2x^2+a_1x+a_0)\varphi=0$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {109--124},
publisher = {mathdoc},
volume = {156},
year = {1986},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_156_a9/}
}
TY - JOUR AU - M. A. Kovalevsky TI - The calculation of the connection multipliers for the equation $x^2\varphi''-(x^3+a_2x^2+a_1x+a_0)\varphi=0$ JO - Zapiski Nauchnykh Seminarov POMI PY - 1986 SP - 109 EP - 124 VL - 156 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1986_156_a9/ LA - ru ID - ZNSL_1986_156_a9 ER -
%0 Journal Article %A M. A. Kovalevsky %T The calculation of the connection multipliers for the equation $x^2\varphi''-(x^3+a_2x^2+a_1x+a_0)\varphi=0$ %J Zapiski Nauchnykh Seminarov POMI %D 1986 %P 109-124 %V 156 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1986_156_a9/ %G ru %F ZNSL_1986_156_a9
M. A. Kovalevsky. The calculation of the connection multipliers for the equation $x^2\varphi''-(x^3+a_2x^2+a_1x+a_0)\varphi=0$. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 16, Tome 156 (1986), pp. 109-124. http://geodesic.mathdoc.fr/item/ZNSL_1986_156_a9/