Inverse problem for acoustical scattering in space with local inhomogeneity
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 16, Tome 156 (1986), pp. 24-34
Voir la notice de l'article provenant de la source Math-Net.Ru
Homogeneous space contains a compact inclusion where the wave velocity is variable. It is irradiated by plane waves propagating in various directions. The inverse problem is to reconstruct the velocity from the scattering amplitude determined as asymptotics of scattered waves in infinity. A procedure of reconstruction and the uniqueness theorem are described in the article.
@article{ZNSL_1986_156_a2,
author = {M. I. Belishev and Ya. V. Kurylev},
title = {Inverse problem for acoustical scattering in space with local inhomogeneity},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {24--34},
publisher = {mathdoc},
volume = {156},
year = {1986},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_156_a2/}
}
TY - JOUR AU - M. I. Belishev AU - Ya. V. Kurylev TI - Inverse problem for acoustical scattering in space with local inhomogeneity JO - Zapiski Nauchnykh Seminarov POMI PY - 1986 SP - 24 EP - 34 VL - 156 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1986_156_a2/ LA - ru ID - ZNSL_1986_156_a2 ER -
M. I. Belishev; Ya. V. Kurylev. Inverse problem for acoustical scattering in space with local inhomogeneity. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 16, Tome 156 (1986), pp. 24-34. http://geodesic.mathdoc.fr/item/ZNSL_1986_156_a2/