On free subgroups of $SL(2,\mathbb C)$ with two parabolic generators
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VIII, Tome 155 (1986), pp. 150-155

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G_\lambda$ be a group generated by a pair of parabolic matrices $A=\left(\begin{smallmatrix}1 0 \\ 1 1 \end{smallmatrix}\right)$ and $B_\lambda=\left(\begin{smallmatrix}1 \lambda \\ 0 1 \end{smallmatrix}\right)$, $\Gamma_0$ be a set of $\lambda\in\mathbb C$ for which $G_\lambda$ is non-free, $\Gamma=\bar\Gamma_0$. Using the theory of Kleinian groups we prove that both sets $\Gamma$ and $\mathbb C\setminus\Gamma$ are connected. Besides we observe that $\mathbb C\setminus\Gamma_0$ is invariant under a large semigroup of polynomial mappings. Using this observation we show that $\Gamma$ coinsides with the closure of non-discrete groups and with the closure of torsion groups. Finally we describe $\Gamma$ in terms of the dynamics of those polynomial mappings.
@article{ZNSL_1986_155_a8,
     author = {M. Yu. Lyubich and V. V. Suvorov},
     title = {On free subgroups of $SL(2,\mathbb C)$ with two parabolic generators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {150--155},
     publisher = {mathdoc},
     volume = {155},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_155_a8/}
}
TY  - JOUR
AU  - M. Yu. Lyubich
AU  - V. V. Suvorov
TI  - On free subgroups of $SL(2,\mathbb C)$ with two parabolic generators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1986
SP  - 150
EP  - 155
VL  - 155
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1986_155_a8/
LA  - ru
ID  - ZNSL_1986_155_a8
ER  - 
%0 Journal Article
%A M. Yu. Lyubich
%A V. V. Suvorov
%T On free subgroups of $SL(2,\mathbb C)$ with two parabolic generators
%J Zapiski Nauchnykh Seminarov POMI
%D 1986
%P 150-155
%V 155
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1986_155_a8/
%G ru
%F ZNSL_1986_155_a8
M. Yu. Lyubich; V. V. Suvorov. On free subgroups of $SL(2,\mathbb C)$ with two parabolic generators. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VIII, Tome 155 (1986), pp. 150-155. http://geodesic.mathdoc.fr/item/ZNSL_1986_155_a8/