On the dynamical system generated bу the equations of motion of Oldroyd fluids
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VIII, Tome 155 (1986), pp. 136-141

Voir la notice de l'article provenant de la source Math-Net.Ru

A construction is given of the attractor for the initial boundary value problem for the equations of motion of Oldroyd fluids in dimension 2. Properties of the evolution operator $V_t$, $t\geqslant0$ are studied and dynamical system $\{\mathfrak M; V_t, -t\infty\}$ is described.
@article{ZNSL_1986_155_a6,
     author = {A. Cotsiolis and A. P. Oskolkov},
     title = {On the dynamical system generated b{\cyru} the equations of motion of {Oldroyd} fluids},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {136--141},
     publisher = {mathdoc},
     volume = {155},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_155_a6/}
}
TY  - JOUR
AU  - A. Cotsiolis
AU  - A. P. Oskolkov
TI  - On the dynamical system generated bу the equations of motion of Oldroyd fluids
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1986
SP  - 136
EP  - 141
VL  - 155
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1986_155_a6/
LA  - ru
ID  - ZNSL_1986_155_a6
ER  - 
%0 Journal Article
%A A. Cotsiolis
%A A. P. Oskolkov
%T On the dynamical system generated bу the equations of motion of Oldroyd fluids
%J Zapiski Nauchnykh Seminarov POMI
%D 1986
%P 136-141
%V 155
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1986_155_a6/
%G ru
%F ZNSL_1986_155_a6
A. Cotsiolis; A. P. Oskolkov. On the dynamical system generated bу the equations of motion of Oldroyd fluids. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VIII, Tome 155 (1986), pp. 136-141. http://geodesic.mathdoc.fr/item/ZNSL_1986_155_a6/