On the dynamical system generated bу the equations of motion of Oldroyd fluids
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VIII, Tome 155 (1986), pp. 136-141
Voir la notice de l'article provenant de la source Math-Net.Ru
A construction is given of the attractor for the initial boundary value problem for the equations of motion of Oldroyd fluids in dimension 2. Properties of the evolution operator $V_t$, $t\geqslant0$ are studied and dynamical system $\{\mathfrak M; V_t, -t\infty\}$ is described.
@article{ZNSL_1986_155_a6,
author = {A. Cotsiolis and A. P. Oskolkov},
title = {On the dynamical system generated b{\cyru} the equations of motion of {Oldroyd} fluids},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {136--141},
publisher = {mathdoc},
volume = {155},
year = {1986},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_155_a6/}
}
TY - JOUR AU - A. Cotsiolis AU - A. P. Oskolkov TI - On the dynamical system generated bу the equations of motion of Oldroyd fluids JO - Zapiski Nauchnykh Seminarov POMI PY - 1986 SP - 136 EP - 141 VL - 155 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1986_155_a6/ LA - ru ID - ZNSL_1986_155_a6 ER -
A. Cotsiolis; A. P. Oskolkov. On the dynamical system generated bу the equations of motion of Oldroyd fluids. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VIII, Tome 155 (1986), pp. 136-141. http://geodesic.mathdoc.fr/item/ZNSL_1986_155_a6/