On the dynamical system generated bу the equations of motion of Oldroyd fluids
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VIII, Tome 155 (1986), pp. 136-141
Cet article a éte moissonné depuis la source Math-Net.Ru
A construction is given of the attractor for the initial boundary value problem for the equations of motion of Oldroyd fluids in dimension 2. Properties of the evolution operator $V_t$, $t\geqslant0$ are studied and dynamical system $\{\mathfrak M; V_t, -t<\infty\}$ is described.
@article{ZNSL_1986_155_a6,
author = {A. Cotsiolis and A. P. Oskolkov},
title = {On the dynamical system generated b{\cyru} the equations of motion of {Oldroyd} fluids},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {136--141},
year = {1986},
volume = {155},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_155_a6/}
}
A. Cotsiolis; A. P. Oskolkov. On the dynamical system generated bу the equations of motion of Oldroyd fluids. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VIII, Tome 155 (1986), pp. 136-141. http://geodesic.mathdoc.fr/item/ZNSL_1986_155_a6/