Quantum groups
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VIII, Tome 155 (1986), pp. 18-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The article is an extended version of the author's report presented to the International Congress of Mathematicians in Berkeley, 1986. It contains a survey of the new algebraic formalism based on the notion of Hopf algebras and designed to serve an algebraic foundation of the Quantum Inverse Scattering Method, numerous examples of Hopf algebras which are both non-commutative and non-commutative are delivered and their connection with the solutions of the Quantum Yang–Baxter Identity is explained.
@article{ZNSL_1986_155_a2,
     author = {V. G. Drinfeld},
     title = {Quantum groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {18--49},
     year = {1986},
     volume = {155},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_155_a2/}
}
TY  - JOUR
AU  - V. G. Drinfeld
TI  - Quantum groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1986
SP  - 18
EP  - 49
VL  - 155
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1986_155_a2/
LA  - ru
ID  - ZNSL_1986_155_a2
ER  - 
%0 Journal Article
%A V. G. Drinfeld
%T Quantum groups
%J Zapiski Nauchnykh Seminarov POMI
%D 1986
%P 18-49
%V 155
%U http://geodesic.mathdoc.fr/item/ZNSL_1986_155_a2/
%G ru
%F ZNSL_1986_155_a2
V. G. Drinfeld. Quantum groups. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VIII, Tome 155 (1986), pp. 18-49. http://geodesic.mathdoc.fr/item/ZNSL_1986_155_a2/