Interpretation of integrable systems of the anharmonic oscillator type via the method of orbits
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VIII, Tome 155 (1986), pp. 187-189
Voir la notice du chapitre de livre
Some recently discovered integrable Hamiltonian systems with quartic potential are incorporated in the $r$-matrix approach using affine Lie algebras. The phase space of these systems is shown to be a coadjoint orbit of a subalgebra of a suitable twisted loop algebra.
@article{ZNSL_1986_155_a12,
author = {A. G. Reiman},
title = {Interpretation of integrable systems of the anharmonic oscillator type via the method of orbits},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {187--189},
year = {1986},
volume = {155},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_155_a12/}
}
A. G. Reiman. Interpretation of integrable systems of the anharmonic oscillator type via the method of orbits. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VIII, Tome 155 (1986), pp. 187-189. http://geodesic.mathdoc.fr/item/ZNSL_1986_155_a12/