Interpretation of integrable systems of the anharmonic oscillator type via the method of orbits
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VIII, Tome 155 (1986), pp. 187-189

Voir la notice de l'article provenant de la source Math-Net.Ru

Some recently discovered integrable Hamiltonian systems with quartic potential are incorporated in the $r$-matrix approach using affine Lie algebras. The phase space of these systems is shown to be a coadjoint orbit of a subalgebra of a suitable twisted loop algebra.
@article{ZNSL_1986_155_a12,
     author = {A. G. Reiman},
     title = {Interpretation of integrable systems of the anharmonic oscillator type via the method of orbits},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {187--189},
     publisher = {mathdoc},
     volume = {155},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_155_a12/}
}
TY  - JOUR
AU  - A. G. Reiman
TI  - Interpretation of integrable systems of the anharmonic oscillator type via the method of orbits
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1986
SP  - 187
EP  - 189
VL  - 155
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1986_155_a12/
LA  - ru
ID  - ZNSL_1986_155_a12
ER  - 
%0 Journal Article
%A A. G. Reiman
%T Interpretation of integrable systems of the anharmonic oscillator type via the method of orbits
%J Zapiski Nauchnykh Seminarov POMI
%D 1986
%P 187-189
%V 155
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1986_155_a12/
%G ru
%F ZNSL_1986_155_a12
A. G. Reiman. Interpretation of integrable systems of the anharmonic oscillator type via the method of orbits. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VIII, Tome 155 (1986), pp. 187-189. http://geodesic.mathdoc.fr/item/ZNSL_1986_155_a12/