Interpretation of integrable systems of the anharmonic oscillator type via the method of orbits
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VIII, Tome 155 (1986), pp. 187-189
Voir la notice de l'article provenant de la source Math-Net.Ru
Some recently discovered integrable Hamiltonian systems with quartic potential are incorporated in the $r$-matrix approach using affine Lie algebras. The phase space of these systems is shown to be a coadjoint orbit of a subalgebra of a suitable twisted loop algebra.
@article{ZNSL_1986_155_a12,
author = {A. G. Reiman},
title = {Interpretation of integrable systems of the anharmonic oscillator type via the method of orbits},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {187--189},
publisher = {mathdoc},
volume = {155},
year = {1986},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_155_a12/}
}
TY - JOUR AU - A. G. Reiman TI - Interpretation of integrable systems of the anharmonic oscillator type via the method of orbits JO - Zapiski Nauchnykh Seminarov POMI PY - 1986 SP - 187 EP - 189 VL - 155 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1986_155_a12/ LA - ru ID - ZNSL_1986_155_a12 ER -
A. G. Reiman. Interpretation of integrable systems of the anharmonic oscillator type via the method of orbits. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VIII, Tome 155 (1986), pp. 187-189. http://geodesic.mathdoc.fr/item/ZNSL_1986_155_a12/