Asymptotic minimax testing of independency hypothesis
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 18, Tome 153 (1986), pp. 60-72

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the minimax problem of hypothesis about $k$-dimentional random vector components independency testing is studied. The alternative hypothesis corresponds to the set of densities on $\mathbb R^k$ which are sufficiently smooth and sufficiently distant in the metric of type $L_p$ from the set of product-densities on $\mathbb R^k$. There are given the, conditions of minimax discernibility and nondiscernibility (in the sense [1,2]) depending on the degree of smoothness, dimention $k$, distance between hypothesis and alternative density sets and value $p$.
@article{ZNSL_1986_153_a5,
     author = {Yu. I. Ingster},
     title = {Asymptotic minimax testing of independency hypothesis},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {60--72},
     publisher = {mathdoc},
     volume = {153},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_153_a5/}
}
TY  - JOUR
AU  - Yu. I. Ingster
TI  - Asymptotic minimax testing of independency hypothesis
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1986
SP  - 60
EP  - 72
VL  - 153
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1986_153_a5/
LA  - ru
ID  - ZNSL_1986_153_a5
ER  - 
%0 Journal Article
%A Yu. I. Ingster
%T Asymptotic minimax testing of independency hypothesis
%J Zapiski Nauchnykh Seminarov POMI
%D 1986
%P 60-72
%V 153
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1986_153_a5/
%G ru
%F ZNSL_1986_153_a5
Yu. I. Ingster. Asymptotic minimax testing of independency hypothesis. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 18, Tome 153 (1986), pp. 60-72. http://geodesic.mathdoc.fr/item/ZNSL_1986_153_a5/