A weighted tessellation of Voronoi with Poisson fields of centroids
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 18, Tome 153 (1986), pp. 160-172
Cet article a éte moissonné depuis la source Math-Net.Ru
A weighted tessellation of Voronoi generated by a system of $n$ Poisson fields of centroids is considered. A composition and boundary fields of the structure are investigated. The intensity of the boundary field between grains of types $i$ and $j$ $(1\leqslant i\leqslant j\leqslant n)$ is proved to be $$ q_{ij}=36^{1/3}\pi^{1/3}\Gamma\left(\frac23\right)p_ip_j\frac{(\alpha_i+\alpha_j)^3-|\alpha_i-\alpha_j|^3}{9\alpha_i\alpha_jc} $$ where $p_i$ is a volume part, $\alpha_i>0$ is a weight (for comparison of distances) of the $i$-th component, $c$ is a scale. Formulae for boundary field intensities in flat and line sections are obtained $q_{ij}^{(2)}=\frac\pi4q_{ij}$, $q_{ij}^{(1)}=\frac12q_{ij}$. Estimations for parameters $p_i$ and $\alpha_i$ dependent on line observations are proposed.
@article{ZNSL_1986_153_a14,
author = {B. P. Harlamov},
title = {A weighted tessellation of {Voronoi} with {Poisson} fields of centroids},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {160--172},
year = {1986},
volume = {153},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_153_a14/}
}
B. P. Harlamov. A weighted tessellation of Voronoi with Poisson fields of centroids. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 18, Tome 153 (1986), pp. 160-172. http://geodesic.mathdoc.fr/item/ZNSL_1986_153_a14/