On the attractors of nonlinear evolution problems
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 18, Tome 152 (1986), pp. 72-85

Voir la notice de l'article provenant de la source Math-Net.Ru

She existence of a compact connected global attractor in the space $X=W_2^2(\Omega)\times W_2^1(\Omega)$ for the problem $u_{tt}+\varepsilon u_t-\Delta u+f(u)=h(x)$, $x\in\Omega\subset\mathbb R^3$, $u|_{\partial\Omega}=0$, with cubical growth of $f(u)$ is prooved.
@article{ZNSL_1986_152_a7,
     author = {O. A. Ladyzhenskaya},
     title = {On the attractors of nonlinear evolution problems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {72--85},
     publisher = {mathdoc},
     volume = {152},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_152_a7/}
}
TY  - JOUR
AU  - O. A. Ladyzhenskaya
TI  - On the attractors of nonlinear evolution problems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1986
SP  - 72
EP  - 85
VL  - 152
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1986_152_a7/
LA  - ru
ID  - ZNSL_1986_152_a7
ER  - 
%0 Journal Article
%A O. A. Ladyzhenskaya
%T On the attractors of nonlinear evolution problems
%J Zapiski Nauchnykh Seminarov POMI
%D 1986
%P 72-85
%V 152
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1986_152_a7/
%G ru
%F ZNSL_1986_152_a7
O. A. Ladyzhenskaya. On the attractors of nonlinear evolution problems. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 18, Tome 152 (1986), pp. 72-85. http://geodesic.mathdoc.fr/item/ZNSL_1986_152_a7/