On the attractors of nonlinear evolution problems
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 18, Tome 152 (1986), pp. 72-85
Voir la notice de l'article provenant de la source Math-Net.Ru
She existence of a compact connected global attractor in the space $X=W_2^2(\Omega)\times W_2^1(\Omega)$ for the problem $u_{tt}+\varepsilon u_t-\Delta u+f(u)=h(x)$, $x\in\Omega\subset\mathbb R^3$, $u|_{\partial\Omega}=0$, with cubical growth
of $f(u)$ is prooved.
@article{ZNSL_1986_152_a7,
author = {O. A. Ladyzhenskaya},
title = {On the attractors of nonlinear evolution problems},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {72--85},
publisher = {mathdoc},
volume = {152},
year = {1986},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_152_a7/}
}
O. A. Ladyzhenskaya. On the attractors of nonlinear evolution problems. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 18, Tome 152 (1986), pp. 72-85. http://geodesic.mathdoc.fr/item/ZNSL_1986_152_a7/