The quasi-classical asymptotics of the scattering cross-section for asymptotically homogeneous potentials
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 18, Tome 152 (1986), pp. 105-136
Cet article a éte moissonné depuis la source Math-Net.Ru
The total scattering cross-section by a potential $gV(x)$, $x\in\mathbb R^m$, $m\geqslant3$, is considered for'large coupling constants $g$ and .wave numbers $k$. It is supposed that $V(x)\sim\Phi(x/|x|)|x|^{-\alpha}$, $2\alpha>m+1$, as $|x|\to\infty$. It is shown that as $gk^{-1}\to\infty$, $g^{3-\alpha}k^{2(\alpha-2)}\to\infty$ the cross-section asymptotically equals $\theta_\alpha(gk^{-1})^\varkappa$, $\varkappa=(m-1)(\alpha-1)^{-1}$. Here the coefficient $\theta_\alpha$ is determined only by the function $\Phi$ and the number $\alpha$. Under additional assumptions $\Phi>0$, $V>0$ this asymptotics holds in the broader region $gk^{-1}\to\infty$, $gk^{\alpha-2}\geqslant c(gk^{-1})^\delta$, $\delta>0$.
@article{ZNSL_1986_152_a10,
author = {A. V. Sobolev},
title = {The quasi-classical asymptotics of the scattering cross-section for asymptotically homogeneous potentials},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {105--136},
year = {1986},
volume = {152},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_152_a10/}
}
TY - JOUR AU - A. V. Sobolev TI - The quasi-classical asymptotics of the scattering cross-section for asymptotically homogeneous potentials JO - Zapiski Nauchnykh Seminarov POMI PY - 1986 SP - 105 EP - 136 VL - 152 UR - http://geodesic.mathdoc.fr/item/ZNSL_1986_152_a10/ LA - ru ID - ZNSL_1986_152_a10 ER -
A. V. Sobolev. The quasi-classical asymptotics of the scattering cross-section for asymptotically homogeneous potentials. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 18, Tome 152 (1986), pp. 105-136. http://geodesic.mathdoc.fr/item/ZNSL_1986_152_a10/