On a representation of symmetric functions in Carleman-Gevrey spaces
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XV, Tome 149 (1986), pp. 116-126
Voir la notice de l'article provenant de la source Math-Net.Ru
We study a representation $f(x)=\tilde f(\sigma_1(x),\dots, \sigma_d(x))$, $(x\in\mathbb R^d)$, of a symmetric function $f$, where $\sigma_j(x)$ is the symmetric homogeneous polynomial of degree $j$. Given a domain $\Omega$ in $\mathbb R^d$ and a non-decreasing sequence $\varphi$, the Carleman-Gevrey space $K^\varphi(\Omega)$ consists of functions $f\in C^\infty(\Omega)$ such that $|\partial_x^\alpha f(x)|\leqslant H^{|\alpha|+1}|\alpha|!\varphi(|\alpha|)$ for any bounded subdomain $\Omega'\subset\Omega$, $H_{f, \Omega'}$ being a positive constant. Let $S=\{(\sigma_1(x), \dots, \sigma_d(x)):x\in\mathbb R^d\}$.
Theorem. Let $\varphi$ and $\psi$ be non-decreasing sequences. Then for every symmetric $f\in K^\varphi(\mathbb R^d)$ there is $\tilde f\in K^\psi(S)$ if and only if $\psi(n)\geqslant\varphi(nd)\varepsilon^{n+1}$, $\varepsilon$ being a positive number not depending on $n$.
@article{ZNSL_1986_149_a9,
author = {M. D. Bronshtein},
title = {On a representation of symmetric functions in {Carleman-Gevrey} spaces},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {116--126},
publisher = {mathdoc},
volume = {149},
year = {1986},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a9/}
}
M. D. Bronshtein. On a representation of symmetric functions in Carleman-Gevrey spaces. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XV, Tome 149 (1986), pp. 116-126. http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a9/