On a representation of symmetric functions in Carleman-Gevrey spaces
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XV, Tome 149 (1986), pp. 116-126

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a representation $f(x)=\tilde f(\sigma_1(x),\dots, \sigma_d(x))$, $(x\in\mathbb R^d)$, of a symmetric function $f$, where $\sigma_j(x)$ is the symmetric homogeneous polynomial of degree $j$. Given a domain $\Omega$ in $\mathbb R^d$ and a non-decreasing sequence $\varphi$, the Carleman-Gevrey space $K^\varphi(\Omega)$ consists of functions $f\in C^\infty(\Omega)$ such that $|\partial_x^\alpha f(x)|\leqslant H^{|\alpha|+1}|\alpha|!\varphi(|\alpha|)$ for any bounded subdomain $\Omega'\subset\Omega$, $H_{f, \Omega'}$ being a positive constant. Let $S=\{(\sigma_1(x), \dots, \sigma_d(x)):x\in\mathbb R^d\}$. Theorem. Let $\varphi$ and $\psi$ be non-decreasing sequences. Then for every symmetric $f\in K^\varphi(\mathbb R^d)$ there is $\tilde f\in K^\psi(S)$ if and only if $\psi(n)\geqslant\varphi(nd)\varepsilon^{n+1}$, $\varepsilon$ being a positive number not depending on $n$.
@article{ZNSL_1986_149_a9,
     author = {M. D. Bronshtein},
     title = {On a representation of symmetric functions in {Carleman-Gevrey} spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {116--126},
     publisher = {mathdoc},
     volume = {149},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a9/}
}
TY  - JOUR
AU  - M. D. Bronshtein
TI  - On a representation of symmetric functions in Carleman-Gevrey spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1986
SP  - 116
EP  - 126
VL  - 149
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a9/
LA  - ru
ID  - ZNSL_1986_149_a9
ER  - 
%0 Journal Article
%A M. D. Bronshtein
%T On a representation of symmetric functions in Carleman-Gevrey spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 1986
%P 116-126
%V 149
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a9/
%G ru
%F ZNSL_1986_149_a9
M. D. Bronshtein. On a representation of symmetric functions in Carleman-Gevrey spaces. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XV, Tome 149 (1986), pp. 116-126. http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a9/