Сверточные уравнения в~пространствах последовательностей с~экспоненциальным ограничением роста
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XV, Tome 149 (1986), pp. 107-115
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We describe the solutions of convolution equations $S*x=0$ (on $\mathbb Z$ or $\mathbb Z_+$) in the spaces of sequences $X=X_{(\beta,\alpha)}=\bigcup_{\gamma\alpha}\bigcup_{\delta1/\beta}\{x:|x_n|\leqslant c\gamma^{|n|}, n0; |x_n|\leqslant c\delta^n, n\geqslant0\}$, $0\leqslant\alpha\beta\leqslant+\infty$. Every 1-invariant subspace $E$, $E\subset X$ equals $\operatorname{Ker} S$ for some $S$. After the Laplace transform $x\to\hat x$ the space $\hat E^\perp$ can be identified with $f\cdot A(K_{(\beta, \alpha)})$, where $K_{(\beta, \alpha)}=\{z:\beta|z|\alpha\}$. The space $E$ can be decomposed as $E=\operatorname{span}\{\{n^k\lambda^n\}_{n\in z}:\lambda\in\sigma\}+\{x\in X:x_k=0, k$ iff $f$ is a Weierstraas product (in $K_{(\beta, \alpha)}$) with zeros not accumulating to $|\lambda|=\beta$.
			
            
            
            
          
        
      @article{ZNSL_1986_149_a8,
     author = {A. A. Borichev},
     title = {{\CYRS}{\cyrv}{\cyre}{\cyrr}{\cyrt}{\cyro}{\cyrch}{\cyrn}{\cyrery}{\cyre} {\cyru}{\cyrr}{\cyra}{\cyrv}{\cyrn}{\cyre}{\cyrn}{\cyri}{\cyrya} {\cyrv}~{\cyrp}{\cyrr}{\cyro}{\cyrs}{\cyrt}{\cyrr}{\cyra}{\cyrn}{\cyrs}{\cyrt}{\cyrv}{\cyra}{\cyrh} {\cyrp}{\cyro}{\cyrs}{\cyrl}{\cyre}{\cyrd}{\cyro}{\cyrv}{\cyra}{\cyrt}{\cyre}{\cyrl}{\cyrsftsn}{\cyrn}{\cyro}{\cyrs}{\cyrt}{\cyre}{\cyrishrt} {\cyrs}~{\cyrerev}{\cyrk}{\cyrs}{\cyrp}{\cyro}{\cyrn}{\cyre}{\cyrn}{\cyrc}{\cyri}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyrery}{\cyrm} {\cyro}{\cyrg}{\cyrr}{\cyra}{\cyrn}{\cyri}{\cyrch}{\cyre}{\cyrn}{\cyri}{\cyre}{\cyrm} {\cyrr}{\cyro}{\cyrs}{\cyrt}{\cyra}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {107--115},
     publisher = {mathdoc},
     volume = {149},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a8/}
}
                      
                      
                    TY - JOUR AU - A. A. Borichev TI - Сверточные уравнения в~пространствах последовательностей с~экспоненциальным ограничением роста JO - Zapiski Nauchnykh Seminarov POMI PY - 1986 SP - 107 EP - 115 VL - 149 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a8/ LA - ru ID - ZNSL_1986_149_a8 ER -
A. A. Borichev. Сверточные уравнения в~пространствах последовательностей с~экспоненциальным ограничением роста. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XV, Tome 149 (1986), pp. 107-115. http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a8/