Measurable partitions of the circle induced by inner functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XV, Tome 149 (1986), pp. 103-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A measurable partition of $\mathbb T$ is induced by an inner function iff the corresponding operator of conditional expectation commutes with the Riesz projection.
@article{ZNSL_1986_149_a7,
     author = {A. B. Aleksandrov},
     title = {Measurable partitions of the circle induced by inner functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {103--106},
     year = {1986},
     volume = {149},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a7/}
}
TY  - JOUR
AU  - A. B. Aleksandrov
TI  - Measurable partitions of the circle induced by inner functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1986
SP  - 103
EP  - 106
VL  - 149
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a7/
LA  - ru
ID  - ZNSL_1986_149_a7
ER  - 
%0 Journal Article
%A A. B. Aleksandrov
%T Measurable partitions of the circle induced by inner functions
%J Zapiski Nauchnykh Seminarov POMI
%D 1986
%P 103-106
%V 149
%U http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a7/
%G ru
%F ZNSL_1986_149_a7
A. B. Aleksandrov. Measurable partitions of the circle induced by inner functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XV, Tome 149 (1986), pp. 103-106. http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a7/