Measurable partitions of the circle induced by inner functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XV, Tome 149 (1986), pp. 103-106
Voir la notice de l'article provenant de la source Math-Net.Ru
A measurable partition of $\mathbb T$ is induced by an inner function iff the corresponding operator of conditional expectation commutes with the Riesz projection.
@article{ZNSL_1986_149_a7,
author = {A. B. Aleksandrov},
title = {Measurable partitions of the circle induced by inner functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {103--106},
publisher = {mathdoc},
volume = {149},
year = {1986},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a7/}
}
A. B. Aleksandrov. Measurable partitions of the circle induced by inner functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XV, Tome 149 (1986), pp. 103-106. http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a7/