Blaschke products satisfying the Carleson--Newman condition and ideals of the algebra~$H^\infty$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XV, Tome 149 (1986), pp. 93-102
Voir la notice de l'article provenant de la source Math-Net.Ru
For an ideal of $H^\infty$ we give sufficient conditions for the ideal to contain a Blaschke product satisfying the Carleson–Newman condition. We prove that any ideal with bounded divisor on the maximal ideal space of $H^\infty$ contains a function with bounded divisor.
@article{ZNSL_1986_149_a6,
author = {V. A. Tolokonnikov},
title = {Blaschke products satisfying the {Carleson--Newman} condition and ideals of the algebra~$H^\infty$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {93--102},
publisher = {mathdoc},
volume = {149},
year = {1986},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a6/}
}
TY - JOUR AU - V. A. Tolokonnikov TI - Blaschke products satisfying the Carleson--Newman condition and ideals of the algebra~$H^\infty$ JO - Zapiski Nauchnykh Seminarov POMI PY - 1986 SP - 93 EP - 102 VL - 149 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a6/ LA - ru ID - ZNSL_1986_149_a6 ER -
V. A. Tolokonnikov. Blaschke products satisfying the Carleson--Newman condition and ideals of the algebra~$H^\infty$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XV, Tome 149 (1986), pp. 93-102. http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a6/