Blaschke products satisfying the Carleson–Newman condition and ideals of the algebra $H^\infty$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XV, Tome 149 (1986), pp. 93-102
Cet article a éte moissonné depuis la source Math-Net.Ru
For an ideal of $H^\infty$ we give sufficient conditions for the ideal to contain a Blaschke product satisfying the Carleson–Newman condition. We prove that any ideal with bounded divisor on the maximal ideal space of $H^\infty$ contains a function with bounded divisor.
@article{ZNSL_1986_149_a6,
author = {V. A. Tolokonnikov},
title = {Blaschke products satisfying the {Carleson{\textendash}Newman} condition and ideals of the algebra~$H^\infty$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {93--102},
year = {1986},
volume = {149},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a6/}
}
V. A. Tolokonnikov. Blaschke products satisfying the Carleson–Newman condition and ideals of the algebra $H^\infty$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XV, Tome 149 (1986), pp. 93-102. http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a6/