A correction theorem and the dyadic space~$H(1,\infty)$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XV, Tome 149 (1986), pp. 67-75
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that for every $L^\infty$-function $f$ and positive $\varepsilon$ there is a function $g$ whose partial sums of both Fourier and Walsh–Fourier series are uniformly bounded by $c(\log 1/\varepsilon)\|f\|_\infty$ and that satisfies $\operatorname{mes}\{f\ne g\}\varepsilon$.
@article{ZNSL_1986_149_a4,
author = {S. V. Kislyakov},
title = {A correction theorem and the dyadic space~$H(1,\infty)$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {67--75},
publisher = {mathdoc},
volume = {149},
year = {1986},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a4/}
}
S. V. Kislyakov. A correction theorem and the dyadic space~$H(1,\infty)$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XV, Tome 149 (1986), pp. 67-75. http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a4/