A correction theorem and the dyadic space~$H(1,\infty)$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XV, Tome 149 (1986), pp. 67-75

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for every $L^\infty$-function $f$ and positive $\varepsilon$ there is a function $g$ whose partial sums of both Fourier and Walsh–Fourier series are uniformly bounded by $c(\log 1/\varepsilon)\|f\|_\infty$ and that satisfies $\operatorname{mes}\{f\ne g\}\varepsilon$.
@article{ZNSL_1986_149_a4,
     author = {S. V. Kislyakov},
     title = {A correction theorem and the dyadic space~$H(1,\infty)$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {67--75},
     publisher = {mathdoc},
     volume = {149},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a4/}
}
TY  - JOUR
AU  - S. V. Kislyakov
TI  - A correction theorem and the dyadic space~$H(1,\infty)$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1986
SP  - 67
EP  - 75
VL  - 149
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a4/
LA  - ru
ID  - ZNSL_1986_149_a4
ER  - 
%0 Journal Article
%A S. V. Kislyakov
%T A correction theorem and the dyadic space~$H(1,\infty)$
%J Zapiski Nauchnykh Seminarov POMI
%D 1986
%P 67-75
%V 149
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a4/
%G ru
%F ZNSL_1986_149_a4
S. V. Kislyakov. A correction theorem and the dyadic space~$H(1,\infty)$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XV, Tome 149 (1986), pp. 67-75. http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a4/