Traces of differentiable functions on subsets of Euclidean space
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XV, Tome 149 (1986), pp. 52-66
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate conditions of existence and coincideness of the traces of functions of Sobolev's and Besov's classes both in the operator sense and in the sense of strict definiteness. A solution is given to the problems on trace and extension for the trace operator $\operatorname{Tr}\colon B\to L^p$ in the case, when $\Gamma$ is a countably $(\mathcal H_m,m)$ – rectifiable $\mathcal H$-measurable subset of $\mathbb R^n$.
@article{ZNSL_1986_149_a3,
author = {A. B. Gulisashvili},
title = {Traces of differentiable functions on subsets of {Euclidean} space},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {52--66},
publisher = {mathdoc},
volume = {149},
year = {1986},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a3/}
}
A. B. Gulisashvili. Traces of differentiable functions on subsets of Euclidean space. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XV, Tome 149 (1986), pp. 52-66. http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a3/