Traces of differentiable functions on subsets of Euclidean space
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XV, Tome 149 (1986), pp. 52-66

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate conditions of existence and coincideness of the traces of functions of Sobolev's and Besov's classes both in the operator sense and in the sense of strict definiteness. A solution is given to the problems on trace and extension for the trace operator $\operatorname{Tr}\colon B\to L^p$ in the case, when $\Gamma$ is a countably $(\mathcal H_m,m)$ – rectifiable $\mathcal H$-measurable subset of $\mathbb R^n$.
@article{ZNSL_1986_149_a3,
     author = {A. B. Gulisashvili},
     title = {Traces of differentiable functions on subsets of {Euclidean} space},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {52--66},
     publisher = {mathdoc},
     volume = {149},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a3/}
}
TY  - JOUR
AU  - A. B. Gulisashvili
TI  - Traces of differentiable functions on subsets of Euclidean space
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1986
SP  - 52
EP  - 66
VL  - 149
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a3/
LA  - ru
ID  - ZNSL_1986_149_a3
ER  - 
%0 Journal Article
%A A. B. Gulisashvili
%T Traces of differentiable functions on subsets of Euclidean space
%J Zapiski Nauchnykh Seminarov POMI
%D 1986
%P 52-66
%V 149
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a3/
%G ru
%F ZNSL_1986_149_a3
A. B. Gulisashvili. Traces of differentiable functions on subsets of Euclidean space. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XV, Tome 149 (1986), pp. 52-66. http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a3/