Imbedding theorems for invariant subspaces of backward shift operator.
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XV, Tome 149 (1986), pp. 38-51

Voir la notice de l'article provenant de la source Math-Net.Ru

For subspaces $K_\theta^p=H^p\cap\theta\bar H^p_0$, $\theta$ being an inner function in the unit disc $\mathbb D$, we find conditions on a measure in $\operatorname{clos}\mathbb D$ ensuring the imbedding $K_\theta^p\subset L^p(\mu)$, $0$. The main result claims that $K_\theta^p\subset L^p(\mu)$ if there are positive constants $\varepsilon$ and $c$ such that $\mu(\Delta)\leqslant c\cdot r_\Delta$ for every disc $\Delta$ of radius $r_\Delta$ centered on $\mathbb T$ and such that $|\theta(z)|\varepsilon$ for some $z\in\Delta$. Cohn's criterion for the imbedding $K_\theta^2\subset L^2(\mu)$ is obtained as a corollary. It is also shown that a necessary and sufficient condition for $K_\theta^p\subset L^p(\mu)$ must depend on $p$.
@article{ZNSL_1986_149_a2,
     author = {A. L. Vol'berg and S. R. Treil'},
     title = {Imbedding theorems for invariant subspaces of backward shift operator.},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {38--51},
     publisher = {mathdoc},
     volume = {149},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a2/}
}
TY  - JOUR
AU  - A. L. Vol'berg
AU  - S. R. Treil'
TI  - Imbedding theorems for invariant subspaces of backward shift operator.
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1986
SP  - 38
EP  - 51
VL  - 149
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a2/
LA  - ru
ID  - ZNSL_1986_149_a2
ER  - 
%0 Journal Article
%A A. L. Vol'berg
%A S. R. Treil'
%T Imbedding theorems for invariant subspaces of backward shift operator.
%J Zapiski Nauchnykh Seminarov POMI
%D 1986
%P 38-51
%V 149
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a2/
%G ru
%F ZNSL_1986_149_a2
A. L. Vol'berg; S. R. Treil'. Imbedding theorems for invariant subspaces of backward shift operator.. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XV, Tome 149 (1986), pp. 38-51. http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a2/