Bounded solutions of ellitpic equations as multipliers in spaces of differentiable functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XV, Tome 149 (1986), pp. 165-176

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that bounded solutions of second order linear elliptic differential equations are multipliers in certain weighted Hilbert spaces or pairs of such spaces. The role of the weight is played by a power of the distance to the boundary of the domain or a function of the distance. This function is subjected to a condition which is necessary and sufficient for the solution to be in the corresponding class of multipliers.
@article{ZNSL_1986_149_a16,
     author = {T. O. Shaposhnikova},
     title = {Bounded solutions of ellitpic equations as multipliers in spaces of differentiable functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {165--176},
     publisher = {mathdoc},
     volume = {149},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a16/}
}
TY  - JOUR
AU  - T. O. Shaposhnikova
TI  - Bounded solutions of ellitpic equations as multipliers in spaces of differentiable functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1986
SP  - 165
EP  - 176
VL  - 149
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a16/
LA  - ru
ID  - ZNSL_1986_149_a16
ER  - 
%0 Journal Article
%A T. O. Shaposhnikova
%T Bounded solutions of ellitpic equations as multipliers in spaces of differentiable functions
%J Zapiski Nauchnykh Seminarov POMI
%D 1986
%P 165-176
%V 149
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a16/
%G ru
%F ZNSL_1986_149_a16
T. O. Shaposhnikova. Bounded solutions of ellitpic equations as multipliers in spaces of differentiable functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XV, Tome 149 (1986), pp. 165-176. http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a16/