Generalized shift, generalized convolution and some extremal relations of the theory of approximation of function
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XV, Tome 149 (1986), pp. 150-157
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider an operator of generalized shift defined on the space of functions summable on $[-1,1]$ with weight $(1-x)^\alpha(1+x)^\beta$ $(\alpha, \beta\geqslant-\frac12)$ and a generalized convolution associated with operator. Some differential operators are introduced and relevant classes of functions are considered, which can be represented in the form of generalized convolution, for these classes we obtain a number of extremal relations of the theory of approximation of function by algebraic polynomials. An essential role is played by some duality relations for classes of generalized convolutions.
@article{ZNSL_1986_149_a13,
author = {S. Z. Rafal'son},
title = {Generalized shift, generalized convolution and some extremal relations of the theory of approximation of function},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {150--157},
publisher = {mathdoc},
volume = {149},
year = {1986},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a13/}
}
TY - JOUR AU - S. Z. Rafal'son TI - Generalized shift, generalized convolution and some extremal relations of the theory of approximation of function JO - Zapiski Nauchnykh Seminarov POMI PY - 1986 SP - 150 EP - 157 VL - 149 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a13/ LA - ru ID - ZNSL_1986_149_a13 ER -
%0 Journal Article %A S. Z. Rafal'son %T Generalized shift, generalized convolution and some extremal relations of the theory of approximation of function %J Zapiski Nauchnykh Seminarov POMI %D 1986 %P 150-157 %V 149 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a13/ %G ru %F ZNSL_1986_149_a13
S. Z. Rafal'son. Generalized shift, generalized convolution and some extremal relations of the theory of approximation of function. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XV, Tome 149 (1986), pp. 150-157. http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a13/