Measures on spaces of operators and isometries
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XV, Tome 149 (1986), pp. 127-136
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mu$ be a finite Borel (in the strong operator topology) measure on the space $B(E, F)$ of bounded linear operator from $E$ into $F$; $E$, $F$ being Banach spaces. Suppose that either $E=C(K)$, $F$ arbitrary, $p>1$ or $E=F=L^q(Y)$, $p>1$, $q>1$, $q\not\in[p,2]$. Suppose next that $\|e\|^p=\int\|Te\|^p\,d\mu(T)$ for every $e\in E$. Then $\mu$ is supported on scalar multiples of isometries.
@article{ZNSL_1986_149_a10,
author = {A. L. Koldobskii},
title = {Measures on spaces of operators and isometries},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {127--136},
publisher = {mathdoc},
volume = {149},
year = {1986},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a10/}
}
A. L. Koldobskii. Measures on spaces of operators and isometries. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XV, Tome 149 (1986), pp. 127-136. http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a10/