Measures on spaces of operators and isometries
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XV, Tome 149 (1986), pp. 127-136

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mu$ be a finite Borel (in the strong operator topology) measure on the space $B(E, F)$ of bounded linear operator from $E$ into $F$; $E$, $F$ being Banach spaces. Suppose that either $E=C(K)$, $F$ arbitrary, $p>1$ or $E=F=L^q(Y)$, $p>1$, $q>1$, $q\not\in[p,2]$. Suppose next that $\|e\|^p=\int\|Te\|^p\,d\mu(T)$ for every $e\in E$. Then $\mu$ is supported on scalar multiples of isometries.
@article{ZNSL_1986_149_a10,
     author = {A. L. Koldobskii},
     title = {Measures on spaces of operators and isometries},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {127--136},
     publisher = {mathdoc},
     volume = {149},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a10/}
}
TY  - JOUR
AU  - A. L. Koldobskii
TI  - Measures on spaces of operators and isometries
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1986
SP  - 127
EP  - 136
VL  - 149
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a10/
LA  - ru
ID  - ZNSL_1986_149_a10
ER  - 
%0 Journal Article
%A A. L. Koldobskii
%T Measures on spaces of operators and isometries
%J Zapiski Nauchnykh Seminarov POMI
%D 1986
%P 127-136
%V 149
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a10/
%G ru
%F ZNSL_1986_149_a10
A. L. Koldobskii. Measures on spaces of operators and isometries. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XV, Tome 149 (1986), pp. 127-136. http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a10/