On quasi-similarity of model contractions with non-equal defects
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XV, Tome 149 (1986), pp. 24-37
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $T_\theta$ and $T_\Phi$ be $C_{10}$ contractions with characteristic functions $\theta\in H^\infty(\mathbb C^n\to\mathbb C^{n+1})$ and $\Phi\in H^\infty(\mathbb C^m\to\mathbb C^{m+1})$. The main result: $T_\theta$ and $T_\Phi$ are quasi-similar iff
$$
\{\det(f,\theta)^i:f\in H_n^2\}=\{\det(g,\Phi)^i:g\in H_m^2\}.
$$
The paper contains an analysis of this condition. Some examples are given.
@article{ZNSL_1986_149_a1,
author = {V. I. Vasyunin and N. G. Makarov},
title = {On quasi-similarity of model contractions with non-equal defects},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {24--37},
publisher = {mathdoc},
volume = {149},
year = {1986},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a1/}
}
V. I. Vasyunin; N. G. Makarov. On quasi-similarity of model contractions with non-equal defects. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part XV, Tome 149 (1986), pp. 24-37. http://geodesic.mathdoc.fr/item/ZNSL_1986_149_a1/