Asymptotic integration of some class of weakly nonlinear Hamilton systems
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 15, Tome 148 (1985), pp. 42-51

Voir la notice de l'article provenant de la source Math-Net.Ru

A method of asymptotic integration of some class of $\infty$-dimensional Hamilton equations is described. The method enables to obtain the solution with desirable precision.
@article{ZNSL_1985_148_a4,
     author = {S. A. Vakulenko},
     title = {Asymptotic integration of some class of weakly nonlinear {Hamilton} systems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {42--51},
     publisher = {mathdoc},
     volume = {148},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_148_a4/}
}
TY  - JOUR
AU  - S. A. Vakulenko
TI  - Asymptotic integration of some class of weakly nonlinear Hamilton systems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1985
SP  - 42
EP  - 51
VL  - 148
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1985_148_a4/
LA  - ru
ID  - ZNSL_1985_148_a4
ER  - 
%0 Journal Article
%A S. A. Vakulenko
%T Asymptotic integration of some class of weakly nonlinear Hamilton systems
%J Zapiski Nauchnykh Seminarov POMI
%D 1985
%P 42-51
%V 148
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1985_148_a4/
%G ru
%F ZNSL_1985_148_a4
S. A. Vakulenko. Asymptotic integration of some class of weakly nonlinear Hamilton systems. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 15, Tome 148 (1985), pp. 42-51. http://geodesic.mathdoc.fr/item/ZNSL_1985_148_a4/