On the scattering problem for the Schrodinger equation in case of the potential linear in time and coordinate.~II Correctness, smoothness, solution's behaviour in infinity
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 15, Tome 148 (1985), pp. 13-29

Voir la notice de l'article provenant de la source Math-Net.Ru

She scattering problem of whispering gallery waves in a vicinity of a boundary flex point is investigated. Theorems of existence, uniqueness,smoothness of the solution, the validity of formal asymptotics when $t\to-\infty$ are proved.
@article{ZNSL_1985_148_a1,
     author = {V. M. Babich and V. P. Smyshlyaev},
     title = {On the scattering problem for the {Schrodinger} equation in case of the potential linear in time and {coordinate.~II} {Correctness,} smoothness, solution's behaviour in infinity},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {13--29},
     publisher = {mathdoc},
     volume = {148},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_148_a1/}
}
TY  - JOUR
AU  - V. M. Babich
AU  - V. P. Smyshlyaev
TI  - On the scattering problem for the Schrodinger equation in case of the potential linear in time and coordinate.~II Correctness, smoothness, solution's behaviour in infinity
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1985
SP  - 13
EP  - 29
VL  - 148
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1985_148_a1/
LA  - ru
ID  - ZNSL_1985_148_a1
ER  - 
%0 Journal Article
%A V. M. Babich
%A V. P. Smyshlyaev
%T On the scattering problem for the Schrodinger equation in case of the potential linear in time and coordinate.~II Correctness, smoothness, solution's behaviour in infinity
%J Zapiski Nauchnykh Seminarov POMI
%D 1985
%P 13-29
%V 148
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1985_148_a1/
%G ru
%F ZNSL_1985_148_a1
V. M. Babich; V. P. Smyshlyaev. On the scattering problem for the Schrodinger equation in case of the potential linear in time and coordinate.~II Correctness, smoothness, solution's behaviour in infinity. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 15, Tome 148 (1985), pp. 13-29. http://geodesic.mathdoc.fr/item/ZNSL_1985_148_a1/