Initial-boundary value problems for equations of motion nonlinear viscoelastic fluids
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 17, Tome 147 (1985), pp. 110-119

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proves “global” theorem on existence generalized solution in sense O.A. Ladyzhenskay of intial-boundary value problem describing the time-dependent flows of particular classes of nonlinear, viscoelastic fluids (for example, flows of aqueous solutions of polymers).
@article{ZNSL_1985_147_a7,
     author = {A. P. Oskolkov},
     title = {Initial-boundary value problems for equations of motion nonlinear viscoelastic fluids},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {110--119},
     publisher = {mathdoc},
     volume = {147},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_147_a7/}
}
TY  - JOUR
AU  - A. P. Oskolkov
TI  - Initial-boundary value problems for equations of motion nonlinear viscoelastic fluids
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1985
SP  - 110
EP  - 119
VL  - 147
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1985_147_a7/
LA  - ru
ID  - ZNSL_1985_147_a7
ER  - 
%0 Journal Article
%A A. P. Oskolkov
%T Initial-boundary value problems for equations of motion nonlinear viscoelastic fluids
%J Zapiski Nauchnykh Seminarov POMI
%D 1985
%P 110-119
%V 147
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1985_147_a7/
%G ru
%F ZNSL_1985_147_a7
A. P. Oskolkov. Initial-boundary value problems for equations of motion nonlinear viscoelastic fluids. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 17, Tome 147 (1985), pp. 110-119. http://geodesic.mathdoc.fr/item/ZNSL_1985_147_a7/