Convex-monotonous bulls and an estimate of Biaximum for solutions of the parabolic equation
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 17, Tome 147 (1985), pp. 95-109
Cet article a éte moissonné depuis la source Math-Net.Ru
N.V. Krylov's estimate of maximum for solutions of the linear parabolic equation is extended to more general class of operators. On the way some properties of convex and convex-monotonous hulls are investigated.
@article{ZNSL_1985_147_a6,
author = {A. I. Nazarov and N. N. Ural'tseva},
title = {Convex-monotonous bulls and an estimate of {Biaximum} for solutions of the parabolic equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {95--109},
year = {1985},
volume = {147},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_147_a6/}
}
TY - JOUR AU - A. I. Nazarov AU - N. N. Ural'tseva TI - Convex-monotonous bulls and an estimate of Biaximum for solutions of the parabolic equation JO - Zapiski Nauchnykh Seminarov POMI PY - 1985 SP - 95 EP - 109 VL - 147 UR - http://geodesic.mathdoc.fr/item/ZNSL_1985_147_a6/ LA - ru ID - ZNSL_1985_147_a6 ER -
A. I. Nazarov; N. N. Ural'tseva. Convex-monotonous bulls and an estimate of Biaximum for solutions of the parabolic equation. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 17, Tome 147 (1985), pp. 95-109. http://geodesic.mathdoc.fr/item/ZNSL_1985_147_a6/