An estimate for the modulus of continuity of generalized solutions of certain singular parabolic equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 17, Tome 147 (1985), pp. 49-71

Voir la notice de l'article provenant de la source Math-Net.Ru

One considers singular parabolic "equations’’ of the form $\partial\beta(u)/\partial t-\Delta u\ni0$, where $\beta(u)=a_0|u|^\lambda\operatorname{sign}u+\nu_0\operatorname{sign}u$, $a_0\geq0$, $\lambda>0$, $\nu_0\geq0$, $a_0+\nu_0>0$, $\operatorname{sign}u$ is a multivalued function, equal to $-I$ for $u0$, to $I$ for $u>0$, and to the segment $[-I,I]$ for $u=0$. Such a class of equations contains, in particular, the model for the two-phase Stefan problem, the porous medium equation, and the plasma equation. For the bounded generalized solutions $u(x,t)$ of the indicated equations (without the assumption $\partial u/\partial t\in L^2(Q_T)$ one has established a qualified local estimate of the modulus of continuity.
@article{ZNSL_1985_147_a4,
     author = {A. V. Ivanov},
     title = {An estimate for the modulus of continuity of generalized solutions of certain singular parabolic equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {49--71},
     publisher = {mathdoc},
     volume = {147},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_147_a4/}
}
TY  - JOUR
AU  - A. V. Ivanov
TI  - An estimate for the modulus of continuity of generalized solutions of certain singular parabolic equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1985
SP  - 49
EP  - 71
VL  - 147
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1985_147_a4/
LA  - ru
ID  - ZNSL_1985_147_a4
ER  - 
%0 Journal Article
%A A. V. Ivanov
%T An estimate for the modulus of continuity of generalized solutions of certain singular parabolic equations
%J Zapiski Nauchnykh Seminarov POMI
%D 1985
%P 49-71
%V 147
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1985_147_a4/
%G ru
%F ZNSL_1985_147_a4
A. V. Ivanov. An estimate for the modulus of continuity of generalized solutions of certain singular parabolic equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 17, Tome 147 (1985), pp. 49-71. http://geodesic.mathdoc.fr/item/ZNSL_1985_147_a4/