On the global solution of the Cauchy problem for the Yang--Mills--Higgs equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 17, Tome 147 (1985), pp. 18-48

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we deal with the Yang–Mills–Higgs equations in the temporal gauge in 4-dimensional Minkowski space-time. We prove that the Cauchy problem is globally and uniquely soluble provided the initial data lie in the appropriate local Sobolev spaces. Our results apply to any compact gauge group and any invariant positive Higgs self-coupling of degree $\leq4$. The spontaneously broken symmetry is admitted. The initial configuration may have an arbitrary magnetic charge and we prove it's conservation in time.
@article{ZNSL_1985_147_a3,
     author = {M. V. Goganov and L. V. Kapitanski},
     title = {On the global solution of the {Cauchy} problem for the {Yang--Mills--Higgs} equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {18--48},
     publisher = {mathdoc},
     volume = {147},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_147_a3/}
}
TY  - JOUR
AU  - M. V. Goganov
AU  - L. V. Kapitanski
TI  - On the global solution of the Cauchy problem for the Yang--Mills--Higgs equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1985
SP  - 18
EP  - 48
VL  - 147
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1985_147_a3/
LA  - ru
ID  - ZNSL_1985_147_a3
ER  - 
%0 Journal Article
%A M. V. Goganov
%A L. V. Kapitanski
%T On the global solution of the Cauchy problem for the Yang--Mills--Higgs equations
%J Zapiski Nauchnykh Seminarov POMI
%D 1985
%P 18-48
%V 147
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1985_147_a3/
%G ru
%F ZNSL_1985_147_a3
M. V. Goganov; L. V. Kapitanski. On the global solution of the Cauchy problem for the Yang--Mills--Higgs equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 17, Tome 147 (1985), pp. 18-48. http://geodesic.mathdoc.fr/item/ZNSL_1985_147_a3/