On the global solution of the Cauchy problem for the Yang--Mills--Higgs equations
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 17, Tome 147 (1985), pp. 18-48
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper we deal with the Yang–Mills–Higgs equations
in the temporal gauge in 4-dimensional Minkowski space-time.
We prove that the Cauchy problem is globally and uniquely soluble
provided the initial data lie in the appropriate local
Sobolev spaces. Our results apply to any compact gauge group
and any invariant positive Higgs self-coupling of degree $\leq4$.
The spontaneously broken symmetry is admitted. The initial configuration
may have an arbitrary magnetic charge and we prove
it's conservation in time.
			
            
            
            
          
        
      @article{ZNSL_1985_147_a3,
     author = {M. V. Goganov and L. V. Kapitanski},
     title = {On the global solution of the {Cauchy} problem for the {Yang--Mills--Higgs} equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {18--48},
     publisher = {mathdoc},
     volume = {147},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_147_a3/}
}
                      
                      
                    TY - JOUR AU - M. V. Goganov AU - L. V. Kapitanski TI - On the global solution of the Cauchy problem for the Yang--Mills--Higgs equations JO - Zapiski Nauchnykh Seminarov POMI PY - 1985 SP - 18 EP - 48 VL - 147 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1985_147_a3/ LA - ru ID - ZNSL_1985_147_a3 ER -
M. V. Goganov; L. V. Kapitanski. On the global solution of the Cauchy problem for the Yang--Mills--Higgs equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 17, Tome 147 (1985), pp. 18-48. http://geodesic.mathdoc.fr/item/ZNSL_1985_147_a3/