Schroedinger operator with weakly accelerating potential
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 17, Tome 147 (1985), pp. 10-12

Voir la notice de l'article provenant de la source Math-Net.Ru

Conceptions of the scattering theory were used for construction of an unitary operator, which realized the equivalence of the operator $-id/d\xi$ on $L_2(\mathbb{R})$ and the Schroedinger operator on simi-axis with the potential $v(x)$, admitting the estimate $-v_-x^{2d}\leq v(x)\leq-v_+x^{2d}$, $v_+>0$, $0\alpha1$.
@article{ZNSL_1985_147_a1,
     author = {M. V. Buslaeva},
     title = {Schroedinger operator with weakly accelerating potential},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {10--12},
     publisher = {mathdoc},
     volume = {147},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_147_a1/}
}
TY  - JOUR
AU  - M. V. Buslaeva
TI  - Schroedinger operator with weakly accelerating potential
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1985
SP  - 10
EP  - 12
VL  - 147
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1985_147_a1/
LA  - ru
ID  - ZNSL_1985_147_a1
ER  - 
%0 Journal Article
%A M. V. Buslaeva
%T Schroedinger operator with weakly accelerating potential
%J Zapiski Nauchnykh Seminarov POMI
%D 1985
%P 10-12
%V 147
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1985_147_a1/
%G ru
%F ZNSL_1985_147_a1
M. V. Buslaeva. Schroedinger operator with weakly accelerating potential. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 17, Tome 147 (1985), pp. 10-12. http://geodesic.mathdoc.fr/item/ZNSL_1985_147_a1/