Discrete Zakharov--Shabat systems and integrable equations
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VII, Tome 146 (1985), pp. 137-146
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The method of dressing transformations is generalized to the case
of discrete spectral problems. As a result, new differentialdifference
analogs of the nonlinear integrable equations (e.g.
the sine-Gordon equation, the vector nonlinear Schroedinger equation
and the $N$-wave system) are obtained. Bibl. – 11.
			
            
            
            
          
        
      @article{ZNSL_1985_146_a8,
     author = {I. T. Habibullin},
     title = {Discrete {Zakharov--Shabat} systems and integrable equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {137--146},
     publisher = {mathdoc},
     volume = {146},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_146_a8/}
}
                      
                      
                    I. T. Habibullin. Discrete Zakharov--Shabat systems and integrable equations. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VII, Tome 146 (1985), pp. 137-146. http://geodesic.mathdoc.fr/item/ZNSL_1985_146_a8/