Discrete Zakharov–Shabat systems and integrable equations
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VII, Tome 146 (1985), pp. 137-146 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The method of dressing transformations is generalized to the case of discrete spectral problems. As a result, new differentialdifference analogs of the nonlinear integrable equations (e.g. the sine-Gordon equation, the vector nonlinear Schroedinger equation and the $N$-wave system) are obtained. Bibl. – 11.
@article{ZNSL_1985_146_a8,
     author = {I. T. Habibullin},
     title = {Discrete {Zakharov{\textendash}Shabat} systems and integrable equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {137--146},
     year = {1985},
     volume = {146},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_146_a8/}
}
TY  - JOUR
AU  - I. T. Habibullin
TI  - Discrete Zakharov–Shabat systems and integrable equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1985
SP  - 137
EP  - 146
VL  - 146
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1985_146_a8/
LA  - ru
ID  - ZNSL_1985_146_a8
ER  - 
%0 Journal Article
%A I. T. Habibullin
%T Discrete Zakharov–Shabat systems and integrable equations
%J Zapiski Nauchnykh Seminarov POMI
%D 1985
%P 137-146
%V 146
%U http://geodesic.mathdoc.fr/item/ZNSL_1985_146_a8/
%G ru
%F ZNSL_1985_146_a8
I. T. Habibullin. Discrete Zakharov–Shabat systems and integrable equations. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VII, Tome 146 (1985), pp. 137-146. http://geodesic.mathdoc.fr/item/ZNSL_1985_146_a8/