Discrete Zakharov–Shabat systems and integrable equations
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VII, Tome 146 (1985), pp. 137-146
Cet article a éte moissonné depuis la source Math-Net.Ru
The method of dressing transformations is generalized to the case of discrete spectral problems. As a result, new differentialdifference analogs of the nonlinear integrable equations (e.g. the sine-Gordon equation, the vector nonlinear Schroedinger equation and the $N$-wave system) are obtained. Bibl. – 11.
@article{ZNSL_1985_146_a8,
author = {I. T. Habibullin},
title = {Discrete {Zakharov{\textendash}Shabat} systems and integrable equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {137--146},
year = {1985},
volume = {146},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_146_a8/}
}
I. T. Habibullin. Discrete Zakharov–Shabat systems and integrable equations. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VII, Tome 146 (1985), pp. 137-146. http://geodesic.mathdoc.fr/item/ZNSL_1985_146_a8/