On estimates for the solutions to the Dirichlet problem for the Laplacian in exterior domains
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VII, Tome 146 (1985), pp. 92-101
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $u(x)$ be the solution of the exterior Dirichlet problem for the equation $\Delta u=f$ vanishing at the infinity. It is shown that the coercive estimate $\| D^2u\|_{Lp)}\leq c\| f\|_{L_p}$ holds for $p In the case $p\geq n/2$ this estimate is established for solutions of the exterior Dirichlet problem that do not vanish at the infinity but may tend to a certain constant or even blow up as a linear function (for $p>n$). Bibl. – 2. Пусть $u$ – решение уравнения $\Delta u=f$ с финитной функцией $f$ по внешней области $\Omega\subset\mathbf{R}^u$ и с условиями $u|_{\partial\Omega}=0$, $u\to0$ при $|x|\to\infty$. Показано, что коэрцитивная оценка $\|D^2u\|_{L_p(\Omega)}\leq c\|f\|$ справедлива лишь при $p. При $p\geq n/2$ она имеет место для решения внешней задачи Дирихле, которая не исчезает на бесконечности, а может стремиться к постоянной или даже к линейной (при $p>n$) функции. Библ. – 2 назв.
@article{ZNSL_1985_146_a5,
author = {P. Maremonti and V. A. Solonnikov},
title = {On estimates for the solutions to the {Dirichlet} problem for the {Laplacian} in exterior domains},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {92--101},
year = {1985},
volume = {146},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_146_a5/}
}
TY - JOUR AU - P. Maremonti AU - V. A. Solonnikov TI - On estimates for the solutions to the Dirichlet problem for the Laplacian in exterior domains JO - Zapiski Nauchnykh Seminarov POMI PY - 1985 SP - 92 EP - 101 VL - 146 UR - http://geodesic.mathdoc.fr/item/ZNSL_1985_146_a5/ LA - ru ID - ZNSL_1985_146_a5 ER -
P. Maremonti; V. A. Solonnikov. On estimates for the solutions to the Dirichlet problem for the Laplacian in exterior domains. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part VII, Tome 146 (1985), pp. 92-101. http://geodesic.mathdoc.fr/item/ZNSL_1985_146_a5/