Integrable graded magnets
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 5, Tome 145 (1985), pp. 140-163 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

She solutions to the Yang–Baxter equation are found which are invariant with respect to the general linear and orthosymplectic supergroups. Hamiltonians and higher integrals of motion (transfer matrix) of the corresponding graded spin systems are diagohalized for finite chains. A generalization of the Yang–Baxter equation is formulated for the $\sigma$-commutative $G$-graded Zamolodchikov's algebra. Bibl. – 30.
@article{ZNSL_1985_145_a9,
     author = {P. P. Kulish},
     title = {Integrable graded magnets},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {140--163},
     year = {1985},
     volume = {145},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_145_a9/}
}
TY  - JOUR
AU  - P. P. Kulish
TI  - Integrable graded magnets
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1985
SP  - 140
EP  - 163
VL  - 145
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1985_145_a9/
LA  - ru
ID  - ZNSL_1985_145_a9
ER  - 
%0 Journal Article
%A P. P. Kulish
%T Integrable graded magnets
%J Zapiski Nauchnykh Seminarov POMI
%D 1985
%P 140-163
%V 145
%U http://geodesic.mathdoc.fr/item/ZNSL_1985_145_a9/
%G ru
%F ZNSL_1985_145_a9
P. P. Kulish. Integrable graded magnets. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 5, Tome 145 (1985), pp. 140-163. http://geodesic.mathdoc.fr/item/ZNSL_1985_145_a9/