On the theory of Maxwell fluids.~III
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 5, Tome 145 (1985), pp. 164-172

Voir la notice de l'article provenant de la source Math-Net.Ru

She classical local solvability of the periodic boundary-value problem and Cauchy problem for the system $$ \frac{\partial\Delta\Psi}{\partial t}+\frac{\partial}{\partial x_2}(\Psi_{x_1}\Delta\Psi)-\frac{\partial}{\partial x_1}(\Psi_{x_2}\Delta\Psi)-\Delta^2\omega=F, \Psi=\alpha\frac{\partial\omega}{\partial t}+\beta\omega+\int^t_0S(t-\tau)\omega(\tau)d\tau, \alpha>0, $$ is proved. The system describes two-dimensional motions of Maxwell fluids of order $L=1,2,\dots$ . Bibl. – 6.
@article{ZNSL_1985_145_a10,
     author = {A. P. Oskolkov},
     title = {On the theory of {Maxwell} {fluids.~III}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {164--172},
     publisher = {mathdoc},
     volume = {145},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_145_a10/}
}
TY  - JOUR
AU  - A. P. Oskolkov
TI  - On the theory of Maxwell fluids.~III
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1985
SP  - 164
EP  - 172
VL  - 145
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1985_145_a10/
LA  - ru
ID  - ZNSL_1985_145_a10
ER  - 
%0 Journal Article
%A A. P. Oskolkov
%T On the theory of Maxwell fluids.~III
%J Zapiski Nauchnykh Seminarov POMI
%D 1985
%P 164-172
%V 145
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1985_145_a10/
%G ru
%F ZNSL_1985_145_a10
A. P. Oskolkov. On the theory of Maxwell fluids.~III. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 5, Tome 145 (1985), pp. 164-172. http://geodesic.mathdoc.fr/item/ZNSL_1985_145_a10/