On the theory of Maxwell fluids. III
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 5, Tome 145 (1985), pp. 164-172
Cet article a éte moissonné depuis la source Math-Net.Ru
She classical local solvability of the periodic boundary-value problem and Cauchy problem for the system $$ \frac{\partial\Delta\Psi}{\partial t}+\frac{\partial}{\partial x_2}(\Psi_{x_1}\Delta\Psi)-\frac{\partial}{\partial x_1}(\Psi_{x_2}\Delta\Psi)-\Delta^2\omega=F, \Psi=\alpha\frac{\partial\omega}{\partial t}+\beta\omega+\int^t_0S(t-\tau)\omega(\tau)d\tau, \alpha>0, $$ is proved. The system describes two-dimensional motions of Maxwell fluids of order $L=1,2,\dots$ . Bibl. – 6.
@article{ZNSL_1985_145_a10,
author = {A. P. Oskolkov},
title = {On the theory of {Maxwell} {fluids.~III}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {164--172},
year = {1985},
volume = {145},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_145_a10/}
}
A. P. Oskolkov. On the theory of Maxwell fluids. III. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 5, Tome 145 (1985), pp. 164-172. http://geodesic.mathdoc.fr/item/ZNSL_1985_145_a10/