On extremal problems in classes of univalent functions which do not assume given values
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 6, Tome 144 (1985), pp. 94-114
Voir la notice de l'article provenant de la source Math-Net.Ru
Section 1 of the paper is devoted to extremal problems in the classes of conformal homeomorphisms of the circle and the annulus, connected directly with the problem on the maximum of the conformal modulus in the family of doubly connected domains. In Secs. 2 and 3 one considers the class $R$ of functions $f(\zeta)=c_1\zeta+c_2\zeta^2+\dotsb$ regular and univalent in the circle $U=\{|\zeta|1\}$ and such that $f(\zeta_1)f(\zeta_2)=1$ for $\zeta_1,\zeta_2\in U$ (the class of Bieberbach–Eilenberg functions). Here one solves the problem of the maximum of $|f^\prime(\zeta_0)|$ in the class of functions $f(\zeta)\in R$ with a fixed value $f(\zeta_0)$, where $\zeta_0$ is an arbitrary point $U$, and of the maximum of $|f^\prime(\zeta_0)|$ in the entire class $R$. For the proof one makes use of the method of the moduli of families of curves.
@article{ZNSL_1985_144_a9,
author = {E. G. Emel'yanov and G. V. Kuz'mina},
title = {On extremal problems in classes of univalent functions which do not assume given values},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {94--114},
publisher = {mathdoc},
volume = {144},
year = {1985},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a9/}
}
TY - JOUR AU - E. G. Emel'yanov AU - G. V. Kuz'mina TI - On extremal problems in classes of univalent functions which do not assume given values JO - Zapiski Nauchnykh Seminarov POMI PY - 1985 SP - 94 EP - 114 VL - 144 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a9/ LA - ru ID - ZNSL_1985_144_a9 ER -
E. G. Emel'yanov; G. V. Kuz'mina. On extremal problems in classes of univalent functions which do not assume given values. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 6, Tome 144 (1985), pp. 94-114. http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a9/