Action of the irregular Hecke operator for a prime number p on the theta series of a quadratic form
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 6, Tome 144 (1985), pp. 68-71
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $F$ be a positive-definite integral even matrix of even order. For an arbitrary prime number $p$ and natural $n$ one obtains an explicit expression for the image of the theta series of genus $n$ of the matrix $F$, under the action of an irregular Hecke operator with index $p$, in the form of a linear combination of theta series.
@article{ZNSL_1985_144_a6,
author = {S. A. Evdokimov},
title = {Action of the irregular {Hecke} operator for a prime number p on the theta series of a quadratic form},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {68--71},
publisher = {mathdoc},
volume = {144},
year = {1985},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a6/}
}
TY - JOUR AU - S. A. Evdokimov TI - Action of the irregular Hecke operator for a prime number p on the theta series of a quadratic form JO - Zapiski Nauchnykh Seminarov POMI PY - 1985 SP - 68 EP - 71 VL - 144 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a6/ LA - ru ID - ZNSL_1985_144_a6 ER -
S. A. Evdokimov. Action of the irregular Hecke operator for a prime number p on the theta series of a quadratic form. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 6, Tome 144 (1985), pp. 68-71. http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a6/