Ranges of values of some functionals on classes of regular functions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 6, Tome 144 (1985), pp. 46-50

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $P_{k, n}(\lambda,\beta)$ be the class of functions $g(z)=1+\sum^\infty_{\nu=n}c_\nu z^\nu$, regular in $B|z|1$ and satisfying the condition $$ \int^{2\pi}_0\left|\operatorname{Re}\left[e^{i\lambda}g(z)-\beta\cos\lambda\right]\Bigm/(1-\beta)\cos\lambda\right|d\theta\leq k\pi,\quad z=re^{i\theta}, $$ $0$ ($k\geq2$, $n\geq1$, $0\leq\beta1$, $-\pi/2\lambda\pi/2$); $M_{k,n}(\lambda,\beta,\alpha)$, $n\geq2$, is the class of functions $f(z)=z+\sum^{\infty}_{\nu=n}a_\nu z^\nu$, regular in $|z|1$ and such that $F_\alpha(z)\in P_{k,n-1}(\alpha,\beta)$, where $F_\alpha(z)=(1-\alpha)\frac{zf^\prime(z)}{f(z)}+\alpha\Bigl(1+\frac{zf^{\prime\prime}(z)}{f^\prime(z)}\Bigr)$ ($0\leq\alpha\leq1$). Onr considers the problem regarding the range of the system $\{g^{(\nu-1)}(z_\ell)/(\nu-1)!\}$, $\ell=1,2,\dots,m$, $\nu=1,2,\dots,N_\ell$, on the class $P_{k,1}(\lambda,\beta)$. On the classes $P_{k,n}(\lambda,\beta)$, $M_{k,n}(\lambda,\beta,\alpha)$ one finds the ranges of $c_\nu$, $\nu\geq n$, $a_m$, $n\leq m\leq2n-2$, and $g(\zeta)$, $F_\alpha(\zeta)$, $0|\zeta|1$, $\zeta$ is fixed.
@article{ZNSL_1985_144_a4,
     author = {E. G. Goluzina},
     title = {Ranges of values of some functionals on classes of regular functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {46--50},
     publisher = {mathdoc},
     volume = {144},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a4/}
}
TY  - JOUR
AU  - E. G. Goluzina
TI  - Ranges of values of some functionals on classes of regular functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1985
SP  - 46
EP  - 50
VL  - 144
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a4/
LA  - ru
ID  - ZNSL_1985_144_a4
ER  - 
%0 Journal Article
%A E. G. Goluzina
%T Ranges of values of some functionals on classes of regular functions
%J Zapiski Nauchnykh Seminarov POMI
%D 1985
%P 46-50
%V 144
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a4/
%G ru
%F ZNSL_1985_144_a4
E. G. Goluzina. Ranges of values of some functionals on classes of regular functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 6, Tome 144 (1985), pp. 46-50. http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a4/