Application of spherical functions to a problem of the theory of quadratic forms
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 6, Tome 144 (1985), pp. 38-45

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem regarding the number of integral points on multidimensional ellipsoids is investigated with the aid of modular forms. In the paper we consider the simplest special case of the following problem: one considers a multidimensional sphere and as a domain on it one selects a "cap.’’ The precise result is formulated in the following manner: let $r_\ell(n)$ be the number of the representations of $n$ by a sum of $\ell$ squares, $0$; then for even $\ell\geq 6$ we have $$ \sum_{-A\leq\frac{x}{\sqrt{n}}\leq A}r_{\ell-1}(n-x^2)=r_\ell(n)\left(K_\ell(A)+O\left(n^{-\frac{\ell-2}{2(\ell+1)}+\varepsilon}\right)\right); $$ for $\ell=4$ we have $$ \sum_{-A\leq\frac{x}{\sqrt{n}}\leq A}r_3(n-x^2)=r_4(n)\left(K_4(A)+O\left(n_1^{-\frac{1}{5}+\varepsilon}\right)\right), $$ where $n=2^\alpha n_1$, $2^\alpha\,\|\,n$; the expression for $K_\ell(A)$, $\ell\geq4$, is given in the paper. It is also shown that one can refine somewhat the results on the distribution of integral points on multidimensional ellipsoids, obtained by A.V. Malyshev by the circular method, remaining within the framework of the same methods.
@article{ZNSL_1985_144_a3,
     author = {E. P. Golubeva and O. M. Fomenko},
     title = {Application of spherical functions to a problem of the theory of quadratic forms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {38--45},
     publisher = {mathdoc},
     volume = {144},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a3/}
}
TY  - JOUR
AU  - E. P. Golubeva
AU  - O. M. Fomenko
TI  - Application of spherical functions to a problem of the theory of quadratic forms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1985
SP  - 38
EP  - 45
VL  - 144
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a3/
LA  - ru
ID  - ZNSL_1985_144_a3
ER  - 
%0 Journal Article
%A E. P. Golubeva
%A O. M. Fomenko
%T Application of spherical functions to a problem of the theory of quadratic forms
%J Zapiski Nauchnykh Seminarov POMI
%D 1985
%P 38-45
%V 144
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a3/
%G ru
%F ZNSL_1985_144_a3
E. P. Golubeva; O. M. Fomenko. Application of spherical functions to a problem of the theory of quadratic forms. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 6, Tome 144 (1985), pp. 38-45. http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a3/