Application of spherical functions to a problem of the theory of quadratic forms
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 6, Tome 144 (1985), pp. 38-45
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The problem regarding the number of integral points on multidimensional ellipsoids is investigated with the aid of modular forms. In the paper we consider the simplest special case of the following problem: one considers a multidimensional sphere and as a domain on it one selects a "cap.’’ The precise result is formulated in the following manner: let $r_\ell(n)$ be the number of the representations of $n$ by a sum of $\ell$ squares, $0$; then for even $\ell\geq 6$ we have 
$$ 
\sum_{-A\leq\frac{x}{\sqrt{n}}\leq A}r_{\ell-1}(n-x^2)=r_\ell(n)\left(K_\ell(A)+O\left(n^{-\frac{\ell-2}{2(\ell+1)}+\varepsilon}\right)\right);
$$
for $\ell=4$ we have 
$$
\sum_{-A\leq\frac{x}{\sqrt{n}}\leq A}r_3(n-x^2)=r_4(n)\left(K_4(A)+O\left(n_1^{-\frac{1}{5}+\varepsilon}\right)\right),
$$
where $n=2^\alpha n_1$, $2^\alpha\,\|\,n$; the expression for $K_\ell(A)$, $\ell\geq4$, is given in the paper. It is also shown that one can refine somewhat the results on the distribution of integral points on multidimensional ellipsoids, obtained by A.V. Malyshev by the circular method, remaining within the framework of the same methods.
			
            
            
            
          
        
      @article{ZNSL_1985_144_a3,
     author = {E. P. Golubeva and O. M. Fomenko},
     title = {Application of spherical functions to a problem of the theory of quadratic forms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {38--45},
     publisher = {mathdoc},
     volume = {144},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a3/}
}
                      
                      
                    TY - JOUR AU - E. P. Golubeva AU - O. M. Fomenko TI - Application of spherical functions to a problem of the theory of quadratic forms JO - Zapiski Nauchnykh Seminarov POMI PY - 1985 SP - 38 EP - 45 VL - 144 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a3/ LA - ru ID - ZNSL_1985_144_a3 ER -
E. P. Golubeva; O. M. Fomenko. Application of spherical functions to a problem of the theory of quadratic forms. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 6, Tome 144 (1985), pp. 38-45. http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a3/