Extreme quadratic forms of a special type in $n$ variables $(n\leq 28)$.
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 6, Tome 144 (1985), pp. 167-172

Voir la notice de l'article provenant de la source Math-Net.Ru

One constructs perfect, extreme positive-definite quadratic forms of a special form in $n$ variables for $n\leq28$, whose frames give the simplest packings of the space $\mathbb{R}^n$.
@article{ZNSL_1985_144_a16,
     author = {A. Hurramov},
     title = {Extreme quadratic forms of a special type in $n$ variables $(n\leq 28)$.},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {167--172},
     publisher = {mathdoc},
     volume = {144},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a16/}
}
TY  - JOUR
AU  - A. Hurramov
TI  - Extreme quadratic forms of a special type in $n$ variables $(n\leq 28)$.
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1985
SP  - 167
EP  - 172
VL  - 144
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a16/
LA  - ru
ID  - ZNSL_1985_144_a16
ER  - 
%0 Journal Article
%A A. Hurramov
%T Extreme quadratic forms of a special type in $n$ variables $(n\leq 28)$.
%J Zapiski Nauchnykh Seminarov POMI
%D 1985
%P 167-172
%V 144
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a16/
%G ru
%F ZNSL_1985_144_a16
A. Hurramov. Extreme quadratic forms of a special type in $n$ variables $(n\leq 28)$.. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 6, Tome 144 (1985), pp. 167-172. http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a16/