Extreme quadratic forms of a special type in $n$ variables $(n\leq 28)$.
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 6, Tome 144 (1985), pp. 167-172
Voir la notice de l'article provenant de la source Math-Net.Ru
One constructs perfect, extreme positive-definite quadratic forms of a special form in $n$ variables for $n\leq28$, whose frames give the simplest packings of the space $\mathbb{R}^n$.
@article{ZNSL_1985_144_a16,
author = {A. Hurramov},
title = {Extreme quadratic forms of a special type in $n$ variables $(n\leq 28)$.},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {167--172},
publisher = {mathdoc},
volume = {144},
year = {1985},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a16/}
}
A. Hurramov. Extreme quadratic forms of a special type in $n$ variables $(n\leq 28)$.. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 6, Tome 144 (1985), pp. 167-172. http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a16/