On Fourier coefficients for Siegel cusp forms of degree~$n$
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 6, Tome 144 (1985), pp. 155-166
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $F(Z)$ be a cusp form of integral weight $k$ relative to the Siegel modular group $Sp_n(\mathbb{Z})$ and let $f(N)$ be its Fourier coefficient with index $N$. Making use of Rankin's convolution, one proves the estimate
$$
f(N)=O\Bigl(|N|^{\frac k2-\frac17\delta(n)}\Bigr), \qquad (1)
$$
where
$$
\delta(n)=\frac{n+1}{(n+1)\Bigl(zn+\frac{1+(-1)^n}{2}\Bigr)+1}
$$
Previously, for $n\geq2$ one has known Raghavan's estimate
$$
f(N)=O(|N|^{\frac k2})
$$
In the case $n=2$, Kitaoka has obtained a result, sharper than (1), namely:
$$
f(N)=O\Bigl(|N|^{\frac k2-\frac14+\varepsilon}\Bigr) \qquad (2)
$$
At the end of the paper one investigates specially the case $n=2$. It is shown that in some cases the result (2) can be improved to, apparently, unimprovable estimates if one assumes some analogues of the Petersson conjecture. These results lead to a conjecture regarding the optimal estimates of $f(N)$, $n=2$.
@article{ZNSL_1985_144_a15,
author = {O. M. Fomenko},
title = {On {Fourier} coefficients for {Siegel} cusp forms of degree~$n$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {155--166},
publisher = {mathdoc},
volume = {144},
year = {1985},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a15/}
}
O. M. Fomenko. On Fourier coefficients for Siegel cusp forms of degree~$n$. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 6, Tome 144 (1985), pp. 155-166. http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a15/