Eichler–Shimura cohomology in the case of Siegel modular forms
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 6, Tome 144 (1985), pp. 128-135 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

One generalizes the Eichler–Shimura result, connecting the space of parabolic modular forms relative to a group $\Gamma$ with the cohomologies of the group $\Gamma$, to the case of the Siegel modular forms.
@article{ZNSL_1985_144_a11,
     author = {A. Yu. Nenashev},
     title = {Eichler{\textendash}Shimura cohomology in the case of {Siegel} modular forms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {128--135},
     year = {1985},
     volume = {144},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a11/}
}
TY  - JOUR
AU  - A. Yu. Nenashev
TI  - Eichler–Shimura cohomology in the case of Siegel modular forms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1985
SP  - 128
EP  - 135
VL  - 144
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a11/
LA  - ru
ID  - ZNSL_1985_144_a11
ER  - 
%0 Journal Article
%A A. Yu. Nenashev
%T Eichler–Shimura cohomology in the case of Siegel modular forms
%J Zapiski Nauchnykh Seminarov POMI
%D 1985
%P 128-135
%V 144
%U http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a11/
%G ru
%F ZNSL_1985_144_a11
A. Yu. Nenashev. Eichler–Shimura cohomology in the case of Siegel modular forms. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 6, Tome 144 (1985), pp. 128-135. http://geodesic.mathdoc.fr/item/ZNSL_1985_144_a11/