Topological conditions for the existence of bounded solutions of quasihomogeneous problems
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part V, Tome 143 (1985), pp. 162-169
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a system of differential equations $\dot x=P(x,t)+X(x,t)$, $(x,t)\in R^n\times R$ where $P\in C^1(R^n\times R)$ and is a positively homogeneous function of $x$ of degree $m$, larger than one, and the function $X$ is small in comparison with $P$ at infinity. In terms of the Lyapunov–Krasovskii function of the corresponding homogeneous system a certain submanifold of the unit sphere is defined. It is shown that if this submanifold is not contractible, then the quasihomogeneous system being considered has at least one bounded solution. The proof is based on the topological principle of Wazewski.
@article{ZNSL_1985_143_a9,
author = {O. A. Ivanov},
title = {Topological conditions for the existence of bounded solutions of quasihomogeneous problems},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {162--169},
publisher = {mathdoc},
volume = {143},
year = {1985},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_143_a9/}
}
TY - JOUR AU - O. A. Ivanov TI - Topological conditions for the existence of bounded solutions of quasihomogeneous problems JO - Zapiski Nauchnykh Seminarov POMI PY - 1985 SP - 162 EP - 169 VL - 143 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1985_143_a9/ LA - ru ID - ZNSL_1985_143_a9 ER -
O. A. Ivanov. Topological conditions for the existence of bounded solutions of quasihomogeneous problems. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part V, Tome 143 (1985), pp. 162-169. http://geodesic.mathdoc.fr/item/ZNSL_1985_143_a9/