Nielsen zeta-function
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part V, Tome 143 (1985), pp. 156-161

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we introduce a new zeta-function in the theory of dynamical systems. We find a sharp bound for the radius of convergence of the Nielsen zeta-function in terms of the topological entropy of the map. It follows from this that the Nielsen zeta-function has a positive radius of convergence. We prove that for an orientation-preserving homeomorphism of a compact surface the Nielsen zeta-function is either a rational function or the radical of a rational function. We calculate the Nielsen zeta-function for maps of circles, spheres, tori, protective spaces, for expanding maps of an orientable smooth compact manifold, for a homotopy periodic map of a connected compact polyhedron having no locally separating point.
@article{ZNSL_1985_143_a8,
     author = {V. B. Pilyugina and A. L. Fel'shtyn},
     title = {Nielsen zeta-function},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {156--161},
     publisher = {mathdoc},
     volume = {143},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_143_a8/}
}
TY  - JOUR
AU  - V. B. Pilyugina
AU  - A. L. Fel'shtyn
TI  - Nielsen zeta-function
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1985
SP  - 156
EP  - 161
VL  - 143
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1985_143_a8/
LA  - ru
ID  - ZNSL_1985_143_a8
ER  - 
%0 Journal Article
%A V. B. Pilyugina
%A A. L. Fel'shtyn
%T Nielsen zeta-function
%J Zapiski Nauchnykh Seminarov POMI
%D 1985
%P 156-161
%V 143
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1985_143_a8/
%G ru
%F ZNSL_1985_143_a8
V. B. Pilyugina; A. L. Fel'shtyn. Nielsen zeta-function. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part V, Tome 143 (1985), pp. 156-161. http://geodesic.mathdoc.fr/item/ZNSL_1985_143_a8/