First symplectic Chern class and Maslov indices
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part V, Tome 143 (1985), pp. 110-129
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An explicit formula is given in this paper for a two-dimensional cocycle in the bar resolution of the group $G=Sp(n,\mathbb R)$, which represents the first Chern class of the natural $n$-dimensional complex vector bundle over $BG^\delta$. It is shown that this cocycle is closely connected with the Maslov indices of Lagrangian subspaces of $\mathbb R^{2n}$.
			
            
            
            
          
        
      @article{ZNSL_1985_143_a5,
     author = {V. G. Turaev},
     title = {First symplectic {Chern} class and {Maslov} indices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {110--129},
     publisher = {mathdoc},
     volume = {143},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_143_a5/}
}
                      
                      
                    V. G. Turaev. First symplectic Chern class and Maslov indices. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part V, Tome 143 (1985), pp. 110-129. http://geodesic.mathdoc.fr/item/ZNSL_1985_143_a5/