First symplectic Chern class and Maslov indices
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part V, Tome 143 (1985), pp. 110-129
Cet article a éte moissonné depuis la source Math-Net.Ru
An explicit formula is given in this paper for a two-dimensional cocycle in the bar resolution of the group $G=Sp(n,\mathbb R)$, which represents the first Chern class of the natural $n$-dimensional complex vector bundle over $BG^\delta$. It is shown that this cocycle is closely connected with the Maslov indices of Lagrangian subspaces of $\mathbb R^{2n}$.
@article{ZNSL_1985_143_a5,
author = {V. G. Turaev},
title = {First symplectic {Chern} class and {Maslov} indices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {110--129},
year = {1985},
volume = {143},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_143_a5/}
}
V. G. Turaev. First symplectic Chern class and Maslov indices. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part V, Tome 143 (1985), pp. 110-129. http://geodesic.mathdoc.fr/item/ZNSL_1985_143_a5/