Density of the set of attractive compacta
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part V, Tome 143 (1985), pp. 170-175

Voir la notice de l'article provenant de la source Math-Net.Ru

A compact set $K$ in a smooth closed manifold $M$ is said to be attractive, if on $M$ there exists a system of differential equations, for which $K$ is an asymptotically stable invariant set. It is proved that the set of attractive compacta is dense and its complement contains a dense set of type $G_\delta$ in the space of all compacta of the manifold $M$ endowed with two natural topologies.
@article{ZNSL_1985_143_a10,
     author = {S. Yu. Pilyugin},
     title = {Density of the set of attractive compacta},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {170--175},
     publisher = {mathdoc},
     volume = {143},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_143_a10/}
}
TY  - JOUR
AU  - S. Yu. Pilyugin
TI  - Density of the set of attractive compacta
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1985
SP  - 170
EP  - 175
VL  - 143
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1985_143_a10/
LA  - ru
ID  - ZNSL_1985_143_a10
ER  - 
%0 Journal Article
%A S. Yu. Pilyugin
%T Density of the set of attractive compacta
%J Zapiski Nauchnykh Seminarov POMI
%D 1985
%P 170-175
%V 143
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1985_143_a10/
%G ru
%F ZNSL_1985_143_a10
S. Yu. Pilyugin. Density of the set of attractive compacta. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part V, Tome 143 (1985), pp. 170-175. http://geodesic.mathdoc.fr/item/ZNSL_1985_143_a10/