Density of the set of attractive compacta
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part V, Tome 143 (1985), pp. 170-175
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A compact set $K$ in a smooth closed manifold $M$ is said to be attractive, if on $M$ there exists a system of differential equations, for which $K$ is an asymptotically stable invariant set. It is proved that the set of attractive compacta is dense and its complement contains a dense set of type $G_\delta$ in the space of all compacta of the manifold $M$ endowed with two natural topologies.
			
            
            
            
          
        
      @article{ZNSL_1985_143_a10,
     author = {S. Yu. Pilyugin},
     title = {Density of the set of attractive compacta},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {170--175},
     publisher = {mathdoc},
     volume = {143},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_143_a10/}
}
                      
                      
                    S. Yu. Pilyugin. Density of the set of attractive compacta. Zapiski Nauchnykh Seminarov POMI, Investigations in topology. Part V, Tome 143 (1985), pp. 170-175. http://geodesic.mathdoc.fr/item/ZNSL_1985_143_a10/