Moment inequalities and the central limit theorem for integrals of random fields with mixing
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part IX, Tome 142 (1985), pp. 39-47

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X_u$, $u\in R^q$ be a weakly dependent random field, $EX_u=0$, let $\mu$ be the Lebesque measure in $R^q$, let $V_n$ be an increasing system of subsets in $R^q$ and let $\zeta_n=(\mu(V_n))^{-1/2}\int_{V_n}X_n\,du$. One obtains a central limit theorem for $\zeta_n$ and estimates for the moments $E|\zeta_n|^t$, $t\ge2$.
@article{ZNSL_1985_142_a2,
     author = {V. V. Gorodetskii},
     title = {Moment inequalities and the central limit theorem for integrals of random fields with mixing},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {39--47},
     publisher = {mathdoc},
     volume = {142},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a2/}
}
TY  - JOUR
AU  - V. V. Gorodetskii
TI  - Moment inequalities and the central limit theorem for integrals of random fields with mixing
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1985
SP  - 39
EP  - 47
VL  - 142
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a2/
LA  - ru
ID  - ZNSL_1985_142_a2
ER  - 
%0 Journal Article
%A V. V. Gorodetskii
%T Moment inequalities and the central limit theorem for integrals of random fields with mixing
%J Zapiski Nauchnykh Seminarov POMI
%D 1985
%P 39-47
%V 142
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a2/
%G ru
%F ZNSL_1985_142_a2
V. V. Gorodetskii. Moment inequalities and the central limit theorem for integrals of random fields with mixing. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part IX, Tome 142 (1985), pp. 39-47. http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a2/