Moment inequalities and the central limit theorem for integrals of random fields with mixing
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part IX, Tome 142 (1985), pp. 39-47
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $X_u$, $u\in R^q$ be a weakly dependent random field, $EX_u=0$, let $\mu$ be the Lebesque measure in $R^q$, let $V_n$ be an increasing system of subsets in $R^q$ and let $\zeta_n=(\mu(V_n))^{-1/2}\int_{V_n}X_n\,du$. One obtains a central limit theorem for $\zeta_n$ and estimates for the moments $E|\zeta_n|^t$, $t\ge2$.
			
            
            
            
          
        
      @article{ZNSL_1985_142_a2,
     author = {V. V. Gorodetskii},
     title = {Moment inequalities and the central limit theorem for integrals of random fields with mixing},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {39--47},
     publisher = {mathdoc},
     volume = {142},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a2/}
}
                      
                      
                    TY - JOUR AU - V. V. Gorodetskii TI - Moment inequalities and the central limit theorem for integrals of random fields with mixing JO - Zapiski Nauchnykh Seminarov POMI PY - 1985 SP - 39 EP - 47 VL - 142 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a2/ LA - ru ID - ZNSL_1985_142_a2 ER -
V. V. Gorodetskii. Moment inequalities and the central limit theorem for integrals of random fields with mixing. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part IX, Tome 142 (1985), pp. 39-47. http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a2/