An extremal problem for empirical measures under dependent Gaussian observations
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part IX, Tome 142 (1985), pp. 164-166
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

One describes a class of metrics $\rho$ in the space of probability distributions on the line, for which the minimum of the mean value of the random variablep $\rho(F_X^*, F_Y^*)$, where $X$, $Y$ are independent random variables, distributed according to the Gauss law $N(0,\Sigma)$, $\Sigma\le1$, is attained at $\Sigma=1$.
@article{ZNSL_1985_142_a18,
     author = {V. N. Sudakov},
     title = {An extremal problem for empirical measures under dependent {Gaussian} observations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {164--166},
     year = {1985},
     volume = {142},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a18/}
}
TY  - JOUR
AU  - V. N. Sudakov
TI  - An extremal problem for empirical measures under dependent Gaussian observations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1985
SP  - 164
EP  - 166
VL  - 142
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a18/
LA  - ru
ID  - ZNSL_1985_142_a18
ER  - 
%0 Journal Article
%A V. N. Sudakov
%T An extremal problem for empirical measures under dependent Gaussian observations
%J Zapiski Nauchnykh Seminarov POMI
%D 1985
%P 164-166
%V 142
%U http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a18/
%G ru
%F ZNSL_1985_142_a18
V. N. Sudakov. An extremal problem for empirical measures under dependent Gaussian observations. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part IX, Tome 142 (1985), pp. 164-166. http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a18/