Accuracy of the approximation of the characteristic functions by polynomials
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part IX, Tome 142 (1985), pp. 141-144

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper one obtains a series of statements allowing us to estimate the accuracy of the approximation of the characteristic function $f(t)=\int e^{itx}dV(x)$ by a polynomial of integer powers of $it$. For example, $$ C_1\Gamma(b)\le\sup_{|t|\le b}|f(t)-1-\sum_{l=1}^{2M-1}\frac{(it)^l}{l!}d_l|\le C_2\Gamma(b) $$ where the positive constants $$, $$ depend only on $M$, $M\ge1$ is an integer, $b>0,$ $$ \Gamma(b)=\int_{-\infty}^{\infty}\min\Big(1, (xb)^{2M}\Big)dV(x)+\max_{1\le l\le2M}b^2|d_l-\int_{|xb|\le1}x^ldV(x)|. $$
@article{ZNSL_1985_142_a14,
     author = {L. V. Rozovskii},
     title = {Accuracy of the approximation of the characteristic functions by polynomials},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {141--144},
     publisher = {mathdoc},
     volume = {142},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a14/}
}
TY  - JOUR
AU  - L. V. Rozovskii
TI  - Accuracy of the approximation of the characteristic functions by polynomials
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1985
SP  - 141
EP  - 144
VL  - 142
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a14/
LA  - ru
ID  - ZNSL_1985_142_a14
ER  - 
%0 Journal Article
%A L. V. Rozovskii
%T Accuracy of the approximation of the characteristic functions by polynomials
%J Zapiski Nauchnykh Seminarov POMI
%D 1985
%P 141-144
%V 142
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a14/
%G ru
%F ZNSL_1985_142_a14
L. V. Rozovskii. Accuracy of the approximation of the characteristic functions by polynomials. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part IX, Tome 142 (1985), pp. 141-144. http://geodesic.mathdoc.fr/item/ZNSL_1985_142_a14/